POWER LAWS AND SCALING LAWS IN EARTHQUAKE OCCURRENCE

ÁLVARO CORRAL
Centre de Recerca Matemàtica
Barcelona, Spain

Erice, July 2009

1. Size Distributions, Power Laws & SOC:
2. Waiting-Time Distributions & Scaling Laws:
Traditional Reductionist Way of Doing

Case of physics:

- Matter is complex

⇒ Find its ultimate constituents

Case of earthquakes:

- An earthquake is a very complex phenomenon whose physics is largely unknown

⇒ Study specific parts of the problem

Great 2004 Sumatra-Andaman earthquake: more than 100 papers! (by title)

15 in *Nature* or *Science*!
0. Introduction

Complementary Approach: Complex-Systems Philosophy

- Can we learn something from collective properties?

⇒ Study emergent statistical properties of (relatively) large areas:
 Concentrate on the whole rather than on the parts

Hundreds of earthquakes are needed for a single paper!
1. Size Distributions, Power Laws & SOC:

Gutenberg-Richter Law: most important law for the statistics of seismicity

- For each earthquake with magnitude $M \geq 8$ there are about
 - 10 with $M \geq 7$
 - 100 with $M \geq 6$, etc...

⇒ Number of earthquakes decays exponentially

$$N(M) \propto 10^{-bM}$$

(with $b \approx 1$)

⇒ Many small earthquakes, few big, good news!

Distribution of magnitudes

- We use the concept of probability density, defined as

\[D(M) \equiv \frac{\text{Prob}[M \leq \text{magnitude} < M + dM]}{dM} \]

and estimated as

\[D(M) = \frac{\text{number of earthquakes with } M \leq \text{magnitude} < M + dM}{\text{total number of earthquakes} \times dM} \]

\[\Rightarrow D(M) \propto dN(M)/dM \]

- The Gutenberg-Richter law yields the same function for \(D(M) \)

\[D(M) \propto 10^{-bM} \propto e^{-b\ln 10 M} \]
• Earthquake radiated energy: energy is (roughly) an exponential function of magnitude, \(E \propto 10^{1.5M} \)

As \(D(E)\,dE = D(M)\,dM \Rightarrow D(E) = D(M)\,dM/dE \)

\(\Rightarrow \) Energy follows a power-law distribution: \(D(E) \propto 1/E^{1+0.67b} \)
Power Laws and Scale Invariance

What is special about power laws?

• Let us perform a scale transformation on a function $y = F(x)$,

\[x \rightarrow x' \equiv ax, \]
\[y \rightarrow y' \equiv cy. \]

In the new axes, the function $F(x)$ transforms into

\[F(x) \rightarrow cF(x'/a) \]

• Scale invariance means that the new function looks the same, $F(x) = cF(x/a)$.

The solution is given by a power law:

\[F(x) = Ax^\alpha \quad \text{with} \quad c = a^\alpha \quad A \text{ arbitrary,} \]
Invariance of power laws under scale transformations
• Invariance of power laws under scale transformations
Example of scale invariance: **fractals**

Fractal: an object that shows *the same structure at all scales*

No characteristic scale ⇒ **Power-law distribution** of structure sizes
Scale Invariance of Earthquake Sizes

- Power law or “fractal” distribution of earthquake sizes (energy)
 ⇒ There is no characteristic size for earthquakes
 ⇒ It is not possible to answer this simple question:

 “How big are earthquakes in a given region?”
Mean Energy of Earthquakes

- Using the Gutenberg-Richter law, the mean energy:

\[\langle E \rangle = \int_{\text{min}}^{\infty} ED(E)dE \propto \int_{\text{min}}^{\infty} \frac{dE}{E^{0.66}} = \infty \]

The mean radiated energy is infinite!

How can it be? The Earth has a finite energy content...
What does it mean?

\[E(\text{Joules}) \approx 60000 \cdot 10^{1.5M} \text{ (roughly)} \]

<table>
<thead>
<tr>
<th>Magnitude</th>
<th>Energy (Joules)</th>
<th>Number</th>
<th>Total energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>(2 \times 10^{12})</td>
<td>1000</td>
<td>(2 \times 10^{15})</td>
</tr>
<tr>
<td>6</td>
<td>(6 \times 10^{13})</td>
<td>100</td>
<td>(6 \times 10^{15})</td>
</tr>
<tr>
<td>7</td>
<td>(2 \times 10^{15})</td>
<td>10</td>
<td>(2 \times 10^{16})</td>
</tr>
<tr>
<td>8</td>
<td>(6 \times 10^{16})</td>
<td>1</td>
<td>(6 \times 10^{16})</td>
</tr>
</tbody>
</table>

In practice, the mean does not converge

⇒ This means that extreme (rare) events determine the dissipation

⇒ Big earthquakes are responsible of the energy release!

⇒ Bad news!!
The GR law is telling us something about the physics of earthquakes
But what?

- “Domino theory”

Tectonic fault: analogous to a domino-like network
Earthquake: chain reaction of topplings or avalanche
• **Branching process**

Each mother leaves a random number \(n \) of daughters

Which will be the total number of offsprings?

i.e., domino topplings \(\equiv \) "activity", proportional to energy
- Probability distribution of total activity, $\langle n \rangle < 1$

At the end, the activity dies
- Probability distribution of total activity, also for $\langle n \rangle > 1$

Finite probability of infinite activity
• Probability distribution of total activity, including $\langle n \rangle = 1$

All sizes are possible, power-law distribution
⇒ Power law distributions are very difficult to achieve ($\langle n \rangle = 1$)

- After any toppling, we don’t know what will happen next
- The perturbation propagates or not to give rise a catastrophic event depending on a huge number of microscopic details which are intrinsically out of control
- Consequences for predictability?
Another Example: Critical Points of Thermodynamic Phase Transitions

Magnetic material: atom = spin with 2 states

There exists a critical temperature T_c

- Above T_c: no magnetization, small clusters
- Below T_c: magnetization, one very large cluster
- At the precise value $T = T_c \Rightarrow$ clusters of all sizes \Rightarrow power law!
Self-organized criticality

- How is the required fine tuning achieved?

- The power-law response emerges as a consequence of the attraction of the dynamics towards a critical point \Rightarrow sandpile paradigm

- **Sandpile metaphor**
 - If there are few grains (flat pile) \Rightarrow small avalanches, pile grows
 - If there are many grains (steep pile) \Rightarrow large avalanches, pile decreases

 This mechanism makes the slope of the pile fluctuate around the critical state.

Bak et al. PRL 1987
Rockfalls

- Size measured in volume of rocks
 - Purple color: earthquake-triggered rockslide event in Umbria (Italy) in 1997
 - Green color: rockfalling at Yosemite (USA) from 1980 to 2002

Exponent 1.1

- Other similar phenomena:
 - Landslides
 - Snow avalanches
 - Sediment gravity flows in the oceans

Malamud, Phys. World 2004
Rice-pile avalanches

Frette et al. Nature 1996
Forest fires: Fires at Ontario (Canada), 1976–1996 (15308 fires)

- Size measured as burned area
- Trees store energy which is rapidly released by fire
- Conclusion: Forests have the largest number of trees allowed by fires

Volcanic eruptions

- Area covered by lava flows in the Springerville volcanic field, Arizona (USA) between 2.1 Myear and 0.3 Myear ago.

Cumulative number of eruptions versus area in km2

Lahaie and Grasso, JGR 1998
Biological extinctions (?)

- Extinction measured as the percentage of extinct families in periods of 4 million years

Sepkoski, Paleobio. 1993; Raup, Bad Genes... 1991, shown in Bak 1996
Tropical cyclones (hurricanes):

- Dissipated Energy (PDI) of North Western Pacific typhoons, 1986–2007

Power-law distribution: \(D(PDI) \propto \frac{1}{PDI} \)

A. Ossó et al. preprint 2009
Rainfall: measured at one point of the Baltic coast, Jan-Jul 1999

- A rain event is defined as the continuous occurrence of rain between drought periods of minimum 1 minute.

- Dynamics:
 - Solar radiation provides energy
 - Evaporated water stores it
 - If a saturation threshold is reached ⇒ rain

Peters et al. PRL 2002
Summarizing:

- SOC \Rightarrow sandpile dynamics and power-law distributions
- Many natural disasters \Rightarrow sandpile-like dynamics and power-law distributions

Does this mean that the previous natural disasters are SOC?

Or something else is necessary (?)
1. Size Distributions, Power Laws & SOC:

First Confirmation of Self-Organized Criticality?

- **Rain:** there exist a critical point and the system is attracted close to it!

![Graph showing precipitation occurrence probability and variance](image-url)

2. Waiting-Time Distributions & Scaling Laws: Motivation

- For earthquakes (and others): are there other indications of criticality?
- Do power-law size distributions reflect some degree of self-similarity in time?

 1 year of earthquakes with $M \geq 5 \Leftrightarrow$
 10 years of earthquakes with $M \geq 6$ etc.?

- Complex-System philosophy:

 - Difficulties studying faults
 - Interaction between faults, no isolated faults exists
 - Problems assigning earthquakes to faults
 - Ambiguity to identify and even define faults
 ⇒ Study spatially extended areas

 - All earthquakes constitute a unique process
 ⇒ Do not distinguish between mainshocks, aftershocks, etc.

 ⇒ The robustness of the results will corroborate the coherence of the approach

Bak et al. PRL 2002
Waiting times

- Consider a fixed spatial region
- Consider earthquakes with magnitude larger than a threshold, \(M \geq M_c \)

Compute waiting time as the time between consecutive earthquakes

\[
\tau_i \equiv t_i - t_{i-1}
\]

\[i = 1, 2, 3 \ldots \]

\(\Rightarrow \text{Broad scale of times} \Rightarrow \text{Gutenberg-Richter gives a poor description!} \)
Worldwide seismicity for $M \geq 5$, from 1973 to 2002
Worldwide seismicity for $M \geq M_c$, with M_c variable, from 1973 to 2002.
Scale transformation of the axes

\[\tau \longrightarrow R_c \tau \]

\[D(\tau, M_c) \longrightarrow D(\tau, M_c)/R_c \]

with \(R_c(M_c) \) the rate of seismic activity: number of earthquakes per unit time

Scaling law:

\[D(\tau, M_c) = R_c f(R_c \tau) \]
2. Universal scaling law for inter-event time distribution

Scaling function:

\[f(\theta) \propto \frac{1}{\theta^{0.3}} e^{-\theta/1.4} \]

\[\theta \equiv R\tau \]
Two main properties:

- Clustering

\[f(\theta) \propto \frac{1}{\theta^{0.3}} e^{-\theta/1.4} \]

It is valid independently of the fit of \(f(\theta) \)

- Scaling

\[D(\tau, M_c) = R_c f(R_c \tau) \]

In fact, the existence of clustering is clear before rescaling
Poisson process

- A dice decides if an earthquake happens or not
 - The dice has many faces
 (probability of occurrence very small, \(p \to 0 \))
 - The dice is thrown continuously in time, \(N \to \infty \)

\[
\text{Prob}[\ n \text{ events in } N \text{ throws}] = \left(\frac{N}{n} \right) p^n (1 - p)^{N-n} \to e^{-\lambda \frac{\lambda^n}{n!}} = \text{Prob}[n \text{ events in time } T]
\]

with \(pN \equiv \lambda = RT \). The waiting-time cumulative distribution function is

\[
S(\tau) \equiv \text{Prob}[\text{waiting time } \geq \tau] = \text{Prob}[0 \text{ events in time } \tau] = e^{-R\tau}
\]

\[
\Rightarrow D(\tau) = -\frac{dS(\tau)}{d\tau} = Re^{-R\tau}
\]
Clustering

- Fit of the scaling function: gamma distribution

\[f(\theta) \propto \frac{1}{\theta^{0.3}} e^{-\theta/1.4} \quad \theta \equiv R \tau \]

Note that rescaling imposes \(\bar{\theta} = 1 \)
\[\Rightarrow \] Only one parameter is independent

- The gamma distribution gives an increased probability for short waiting times
 (in comparison with a Poisson process, \(f(\theta) = e^{-\theta} \approx 1 \) for \(\theta < 1 \)) = clustering

\[\Rightarrow \] Earthquakes tend to attract each other

\[\Rightarrow \] Counterintuitive consequences:

\textit{The longer you have been expecting for an earthquake the longer you will still have to wait}
2. Waiting-Time Distributions & Scaling Laws: Clustering

Consequence of clustering: waiting-time paradox

- The longer you have been expecting for an earthquake, the longer you will still have to wait.
Consequence of clustering: waiting-time paradox

- **The longer you have been expecting for an earthquake the longer you will still have to wait**
Consequence of clustering: waiting-time paradox

- The longer you have been expecting for an earthquake, the longer you will still have to wait.
2. Waiting-Time Distributions & Scaling Laws: Clustering

Consequence of clustering: waiting-time paradox

- The longer you have been expecting for an earthquake, the longer you will still have to wait.
How is this paradoxical effect measured?

Expected Residual Recurrence Time

\[
\epsilon(\tau_0) \equiv \langle \tau - \tau_0 \mid \tau > \tau_0 \rangle = \frac{\int_{\tau_0}^{\infty} (\tau - \tau_0) D_w(\tau) d\tau}{\int_{\tau_0}^{\infty} D_w(\tau) d\tau} \approx \frac{\sum_{\forall i \text{ s.t. } \tau_i > \tau_0} (\tau_i - \tau_0)}{\text{num of equakes s.t. } \tau_i > \tau_0}
\]
• This result seems certainly **paradoxical**, as for example:
 - If you are **waiting for the metro**, you expect the next train is approaching
 - When you **celebrate your birthday**, you may feel you are consuming your life

• From a statistical point of view, this is **only counterintuitive**, as there are counterexamples
 - **Newborns** become “healthier” as time passes
 - **Companies** become more solid with time
 (it is not preferable to invest your money in a very new company!)

• For earthquakes, this seems even **more counterintuitive**:
 - The increase of time implies the **increase on stress** on the faults
 - The occurrence of earthquakes decreases the stress in some areas, but we have no occurrence since the last one
2. Universal scaling law for inter-event time distribution
2. Waiting-Time Distributions & Scaling Laws: Scaling

- **Scaling law**

\[D(\tau, M_c) = R_c f(R_c \tau) \]

Gutenberg-Richter law: \(R_c \propto 10^{-b M_c} \)

In terms of energy: \(R_c \propto 1/E_c^\beta \), so:

\[D(\tau, E_c) = E_c^{-\beta} \hat{f}(E_c^{-\beta} \tau) \]

This is the condition of scale invariance for 2d functions:

\[F(x, y) = c F(x/a_1, y/a_2) \Rightarrow F(x, y) = x^\alpha f(y/x^\beta) \]

with \(f \) arbitrary, \(\alpha = \ln c / \ln a_1 \) and \(\beta = \ln a_2 / \ln a_1 \)

Why is this remarkable?
Relation with renormalization-group (RG) transformations
2. Waiting-Time Distributions & Scaling Laws: RG Transformations

Relation with renormalization-group transformations

Gala renormalizes into Lincoln!
• **RG transformation:**
The change of M_c (decimation) plus the re-scaling with R_c is analogous to a renormalization-group transformation

Christensen & Moloney
Complexity and Criticality
2. Renormalization for Earthquakes: \(M \geq 5 \) for 1 year
2. Renormalization for Earthquakes: $M \geq 6$ for 1 year

![Graph showing earthquake magnitudes over time]
2. Renormalization for Earthquakes: $M \geq 6$ for 10 years
2. Renormalization for Earthquakes: $M \geq 5$ for 1 year

![Graph showing magnitude over time with a renormalization transformation applied]
2. Waiting-Time Distributions & Scaling Laws:

Mathematical results for renewal processes
(no correlations, magnitudes and times independent)

- Scaling \Rightarrow Invariance of seismicity under RG transformations

- RG Transformation $=$ random thinning (decimation) + rescaling:

$$\top D(s) = \frac{pD(ps)}{1 - qD(ps)}$$

with $D(s)$ the Laplace transform of $D(\tau)$ and $p \equiv R(M'_c)/R(M_c)$, $q \equiv 1 - p$

- The only fixed point is Poisson $\top D(s) = D(s) \Rightarrow D(\tau) = Re^{-R\tau}$

- Moreover, the Poisson process is the attractor for all waiting time distributions
 with finite mean
2. Waiting-Time Distributions & Scaling Laws:

- Summary: for processes with no correlations and a finite mean
 \[\Rightarrow \text{the Poisson process is a trivial fixed point} \]

- But the observed \(D(\tau) \) is not exponential
 \[\Rightarrow \text{There must be correlations} \]

- Correlations are fundamental to determine the form of \(D(\tau) \)

- Short-range correlations do not seem enough to escape from Poisson

- Correlations should be long ranged (Lennartz et al., EPL 2008)

- A RG approach could provide scaling relations between the exponent of \(D(\tau) \), the exponent of correlations, and the Gutenberg-Richter exponent

- Connection with critical phenomena
Accumulated number of earthquakes (normalized) versus time with $N_{tot} = 84771$ for Southern California and $N_{tot} = 46054$ for worldwide seismicity.

⇒ worldwide seismicity is stationary, Southern California is not stationary
Changing the spatial region: WW stationary seismicity up to 2.8° (300 km)
Universal scaling law: also California, Japan, and Spain, for stationary periods.
ETAS model (epidemic-type aftershock sequence)

- Each earthquake (i) triggers other earthquakes with
 - Probability proportional to the Omori law, $1/(t - t_i)^p$
 - and proportional to the productivity law, 10^{aM_i} (power law)
 - Magnitude given by the Gutenberg-Richter law, 10^{-bM} (power law)

- Hard mathematics show that
 - The scaling function is different
 - Even more, a scaling law cannot hold exactly!

 ⇒ there must be (very) slow variations with magnitude
 ⇒ the ETAS distribution renormalizes to an exponential

Saichev & Sornette, PRL 2006
2. Waiting-Time Distributions & Scaling Laws: Criticism

- Saichev & Sornette’s fit: 4 parameters:

- But the ETAS model is not scale invariant (from its definition)!

- Try with a scale-invariant model?
 For instance: Vere-Jones model, AAP 2005;
 DS model, Lippiello et al. PRL 2007;
 BASS model, Turcotte et al. GRL 2007
2. Waiting-Time Distributions & Scaling Laws: Fractures

- Unexpected pulses detected in the CRESST project for dark matter search at the Gran Sasso Laboratory
 Cryogenic detector (at milliKelvin) made by a sapphire monocystal

> Åström et al. PLA 2006

- Radioactive contamination? No Poisson distribution!
- Origin: nanofractures in the crystal due to the tight clamping of the detector
2. Waiting-Time Distributions & Scaling Laws: Fractures

• Acoustic emission from laboratory rock fractures

![Graph showing probability density function](image)

☆ **Materials**: sandstones (wet conditions), granite (dry), Etna basalt (dry)
☆ **Loading conditions**: constant displacement rate, AE activity feedback control of loading, punch-through loading
☆ **Confined pressures**: from 5 to 100 MPa

Davidsen *et al.* PRL 2007
• Enormous range of validity of the scaling law:

★ From nanofractures involving the breaking of only several hundreds of covalent bonds (5 keV $\approx 8 \cdot 10^{-16}$ J)

to very large earthquakes ($M \geq 7$ or radiated energy $\geq 2 \cdot 10^{15}$ J)

⇒ More than 30 orders of magnitude of validity!

★ Profound differences between the homogeneity and regularity of a monocrystal at milli-Kelvin temperatures and the heterogeneity of fault gouge producing (and produced by) earthquakes

⇒ Universality
2. Waiting-Time Distributions & Scaling Laws: Correlations

Conditional probability density (for recurrence times)

\[D_w(\tau|X) \equiv \frac{\text{Prob}[\tau \leq \text{recurrence time} < \tau + d\tau \text{ conditioned to } X]}{d\tau} \]

- For each \(\tau_i \), \(X \) will be different sets of values (large, small, etc.) of
 - \(M_i \) (current magnitude)
 - \(M_{i-1} \) (previous magnitude)
 - \(\tau_{i-1} \) (previous recurrence time)

- if \(D_w(\tau|X) = D_w(\tau) \Rightarrow \tau \text{ and } X \text{ independent} \)

- if \(D_w(\tau|X) \neq D_w(\tau) \Rightarrow \tau \text{ and } X \text{ correlated (linearly or nonlinearly)} \)
2. Waiting-Time Distributions & Scaling Laws: Correlations

![Diagram of a square grid with time on the horizontal axis and magnitude on the vertical axis. The grid shows the interdependence between different magnitudes and times.]

- \(M_{i-2} \)
- \(M_{i-1} \)
- \(M_i \)
- \(\tau_{i-1} \)
- \(\tau_i \)
Relation of τ_{i-1} with τ_i for Southern-California stationary seismicity

\[D_w(\tau_i | \tau_a \leq \tau_{i-1} < \tau_b) \neq D_w(\tau_i) \implies \tau_i \text{ does depend on } \tau_{i-1} \] (positive correlation)
Relation of M_{i-1} with τ_i for Southern-California stationary seismicity

$$D_w(\tau_i | M_{i-1} \geq M'_c) \neq D_w(\tau_i) \quad \Rightarrow \quad \tau_i \text{ does depend on } M_{i-1} \quad \text{(anticorrelation)}$$
Conclusion

- “The shorter the time between 2 earthquakes, the shorter the time to the next”
- “The larger the magnitude, the shorter the time to the next earthquake”

⇒ Recurrence times depend on history

- Possible existence of long-range correlations [Lennartz et al. 2007]
2. Waiting-Time Distributions & Scaling Laws: Correlations

\[D_w(\tau_i | M_{i-1} \geq M'_c; M_c) \text{ only depends on } \tau \text{ and } M'_c - M_c \]

Moreover, a new scaling law holds, if \(R(M_c, M'_c) \equiv 1/\langle \tau(M_c, M'_c) \rangle \),

\[\Rightarrow D_w(\tau_i | M_{i-1} \geq M'_c; M_c) = R_w f(R_w \tau_i, M'_c - M_c) \]
Relation of M_i with τ_i for Southern-California stationary seismicity

\[D_w(\tau_i | M_i \geq M'_c) \sim D_w(\tau_i) \implies M_i \text{ is independent on } \tau_i \]
Magnitude probability densities conditioned to the preceding magnitude

\[D_w(M_i|M_{i-1} \geq M'_c) \approx D_w(M_i) \Rightarrow M_i \text{ is independent on } M_{i-1} \text{ (for } \tau_i > 30 \text{ min)} \]
Conclusion

- “The time you have been waiting for an earthquake does not influence its magnitude”

- “The magnitude of a given event does not influence the magnitude of the next one”

⇒ Magnitude seems to be independent on history

An earthquake does not know how big is going to be

But see Lippiello et al. PRL 2007
Verbs in novel *Clarissa*, by S. Richardson (year 1748, 1 million words)

⇒ Scaling and clustering (attraction)! Fit: gamma distribution with $\gamma = 0.6$
Comparing verbs in *Clarissa* with earthquakes in S. California, 1995-1998

\[
\theta = \ell / \ell_w \text{ for words, } \theta = R \tau = \tau / \bar{\tau} \text{ for earthquakes}
\]
Conclusions

• The dynamics of earthquake occurrence shows self-similar clustering, described by a universal scaling law.

• The same law holds for fractures up to very small scales (Davidsen et al., Åstrom et al.).

• The scaling law is equivalent to the invariance of the system under renormalization transformation.

• Correlations are essential to the existence of the scaling law.

• References at http://einstein.uab.es/acorralc.