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0. Introduction 1

Traditional Reductionist Way of Doing

Case of physics:

• Matter is complex

⇒ Find its ultimate constituents

Case of earthquakes:

• An earthquake is a very complex phenomenon whose physics is largely unknown

⇒ Study specific parts of the problem

Great 2004 Sumatra-Andaman earthquake: more than 100 papers! (by title)
15 in Nature or Science!



0. Introduction 2

Complementary Approach: Complex-Systems Philosophy

• Can we learn something from collective properties?

⇒ Study emergent statistical properties of (relatively) large areas:
Concentrate on the whole rather than on the parts

Hundreds of earthquakes are needed for a single paper!
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Gutenberg-Richter Law: most important law for the statistics of seismicity

• For each earthquake with magnitude M ≥ 8 there are about

? 10 with M ≥ 7
? 100 with M ≥ 6, etc...

65The physics of earthquakes 1473
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Figure 23. Magnitude–frequency relationship for earthquakes in the world for the period 1904 to
1980. N(M) is the number of earthquakes per year with the magnitude �M . The solid line shows
a slope of −1 on the semilog plot which corresponds to a b-value of 1. Note that, on the average,
approximately one earthquake with M � 8 occurs every year. The data sources are as follows:
M � 8, for the period 1904 to 1980 from Kanamori (1983); M = 5.5, 6.0, 6.5, 7.0 and 7.5, for
the period from 1976 to 2000 from Ekstrom (2000); M = 4 and 5, for the period January 1995 to
January 2000 from the catalogue of the Council of National Seismic System. For this range, the
catalogue may not be complete, and N may be slightly underestimated.

At present, the accuracy of the macroscopic source parameters, especially ER and 	σs,
is not good enough to accurately estimate the fracture parameters Gc, Kc and Dc, and to draw
more definitive conclusions on the rupture dynamics of earthquakes. Currently, extensive
efforts are being made to improve the accuracy of determinations of the macroscopic source
parameters.

5. Earthquakes as a complex system

Another possible approach to understanding why earthquakes happen is to take a broad
view beyond a single event. We can study earthquakes by dealing with large groups of
earthquakes statistically. The goal is to find systems that robustly reproduce the general
patterns of seismicity regardless of the details of the rupture microphysics. This approach has
had considerable success characterizing the types of models that will reproduce the observed
magnitude–frequency relationship (i.e. Gutenberg–Richter relation) used in seismology.

The magnitude–frequency relationship (the Gutenberg–Richter relation). In general small
earthquakes are more frequent than large earthquakes. This is quantitatively stated by the
Gutenberg–Richter relation (Gutenberg and Richter (1941), a recent review is found in Utsu
(2002).) It describes the number of earthquakes expected of each size, or magnitude, in a given
area. In any area much larger than the rupture area of the largest earthquake considered, the
number of earthquakes, N(M), which have a magnitude greater than or equal to M is given
by the relation

log N(M) = a − bM, (5.1)

where a and b are constants. Figure 23 shows that the Gutenberg–Richter relationship
even applies to a seismicity catalogue encompassing the entire planet. Approximately
one earthquake with M � 8 occurs every year somewhere in the Earth.

Kanamori & Brodsky, Rep. Prog. Phys. 2004

⇒ Number of earthquakes
decays exponentially

N(M)∝ 10−bM

(with b' 1)

⇒ Many small earthquakes, few big, good news!
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Distribution of magnitudes

• We use the concept of probability density, defined as

D(M)≡ Prob [M ≤ magnitude < M + dM ]

dM

and estimated as

D(M) =
number of earthquakes with M ≤ magnitude < M + dM

total number of earthquakes× dM

⇒ D(M)∝ dN(M)/dM

• The Gutenberg-Richter law yields the same function for D(M)

D(M)∝ 10−bM ∝ e−b ln 10 M
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• Earthquake radiated energy:
energy is (roughly) an exponential function of magnitude, E∝ 101.5M

As D(E)dE =D(M)dM ⇒D(E) =D(M)dM/dE

⇒ Energy follows a power-law distribution: D(E)∝ 1/E1+0.67b

1. Size Distributions: Energy of Earthquakes 4

• Earthquake energy: is an exponential function of magnitude, E∝ 101.5M

⇒ Energy follows a power-law distribution: D(E)∝ 1/E1.66
62
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CORRESPONDENCE

Effect of the Sumatran mega-earthquake on the global 
magnitude cut-off and event rate
To the Editor — Th e great Sumatran 
earthquake of 2004 allows us to assess 
the statistics and statistical stability of 
the global earthquake catalogue from 
the digital era. A key question is: do such 
mega-earthquakes continue to follow the 
Gutenberg–Richter (G–R) trend1, or is 
there an observable cut-off 2? Physically, 
there must be a cut-off  at a rupture length 
less than that of the planet circumference, 
but where exactly is it? Extreme events 
can also aff ect the whole magnitude range 
through aft ershock generation3,4; so a 
second key question is how stable is the 
event rate for events of all sizes? Both these 
questions have signifi cant implications 
for assessing uncertainties in seismic 
hazard associated with the relatively 
short duration of the current catalogue 
compared with the relatively long average 
recurrence period for such mega-events. 
Th e results may also have implications for 
the interpretation of other time-limited 
geophysical time series that exhibit 
power-law scaling.

Th e most commonly cited earthquake 
recurrence model is the G–R law, 
log F(m) = a – bm, where F here is 
incremental frequency, m is magnitude, 
a is related to the total event rate dN/dt 
and the slope b is approximately 1. Th is 
implies a power-law distribution in scalar 
seismic moment1 M: F(M) ∝ M–B–1, where 
M is the product of rupture area, average 
slip and rigidity modulus; B = 2/3b; 
and logM (in N m) = 9.1 + 1.5m. Finite 
tectonic moment release rates, dM/dt, 
have been used to show that the most 
likely form of truncation in the absence 
of other constraints is an exponential 
tail to the distribution of the generalized 
gamma form F(M) ∝ M–B–1e–M/θ, where 
the characteristic moment θ defi nes a 
gradual cut-off 2.

Prior to the Sumatra event, the 
simplest distribution consistent with the 
data from the Centroid Moment Tensor 
Catalogue (1 Jan 1977–30 June 1999) had 
been inferred to be a gamma distribution, 
using an appropriate statistical 
information criterion and assuming a 
conservative Poisson distribution of 
errors in incremental frequency5. We 
repeat this analysis for m≥5.75 and depths 
up to 70 km for the same time range, 
and compare it with a similar analysis 
of data up to end December 2006. Th e 
depth range is appropriate for shallow 

earthquakes, and the magnitude range 
is suffi  ciently high to ensure all events of 
this size have been recorded6. Th e gamma 
distribution is preferred for data up to 
30 June 1999 (Fig. 1a, green line). For 
data up to 31 December 2006 the G–R 
law is now the best fi t (Fig. 1a, black line): 

the great 26 December 2004 earthquake 
and its aft ershocks have quantitatively 
straightened the line on Fig. 1a. Th is 
indicates that the cut-off  moment is larger 
than previously thought, and in eff ect 
cannot be constrained accurately at present 
by the data.

In contrast, the total average monthly 
global event rate has increased from 14.3 
to 14.7 since 1990, and has been more 
or less constant in the last decade or so 
(Fig 1b). Th e great Sumatra earthquake 
and its aft ershocks perturb this trend by 
only ~1%, an amount limited by averaging 
over the 30-year length of the catalogue. 
Signifi cant perturbation of the global 
event rate can now only be produced 
by events with a magnitude greater 
than the Sumatra event occurring in 
the relatively near future Th e standard 
deviation of monthly frequency for events 
of all sizes above the threshold has in 
fact increased systematically since 1990 
and is now 5.2 events per month — some 
36% of the event rate. We conclude that 
smaller magnitudes do have a much 
more statistically stable frequency of 
occurrence (at least within this relatively 
large standard deviation), but we will 
only be reasonably confi dent that 
statistical convergence across the whole 
magnitude range has occurred aft er the 
true cut-off  for the global frequency-size 
distribution has been suffi  ciently sampled 
in time.
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Figure 1 Results of statistical analysis. 
a, Incremental frequency F (summed over the time 
period of interest) versus seismic moment for the 
CMT catalogue up to the end of June 1999 (in 
green) and the end of December 2006 (in black), 
for events m > 5.75 at shallow (<70 km) depth 
since 1 Jan 1977. Best fi t curves are shown as 
solid lines. For data used to fi t the green curve, the 
difference in the Bayesian information criterion5 
ΔBIC of −3.5 implies that the gamma distribution is 
the best fi t, with exponent B = 0.637 (±0.011) and 
cut-off moment θ = 2.18 (+0.43, −0.60) × 1021 N m. 
For data used to fi t the black line, ΔBIC = +1.0, 
implying the G–R distribution is the best fi t, with 
B = 0.667 (±0.010). b, Plot of the mean (black 
diamonds) and standard deviation (blue triangles) 
in the number of events per month for data 
between January 1977 and December in the end 
years shown.

log10(S in N m) S is seismic moment (∝E)

Main et al. Nature Geosci. 2008



1. Size Distributions, Power Laws & SOC: Scale Invariance 6

Power Laws and Scale Invariance
What is special about power laws?

• Let us perform a scale transformation on a function y =F (x),

x→x′≡ ax,
y→ y′≡ cy.

In the new axes, the function F (x) transforms into

F (x)→ cF (x′/a)

• Scale invariance means that the new function looks the same, F (x) = cF (x/a)

The solution is given by a power law:

F (x) =Axα with c= aα A arbitrary,
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• Invariance of power laws under scale transformations1. Collective Properties of Earthquakes 14
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1. Size Distributions, Power Laws & SOC: Scale Invariance 7

• Invariance of power laws under scale transformations1. Collective Properties of Earthquakes 15
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1. Size Distributions, Power Laws & SOC: Scale Invariance 8

• Example of scale invariance: fractals

Fractal: an object that shows the same structure at all scales

No characteristic scale ⇒ Power-law distribution of structure sizes
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Scale Invariance of Earthquake Sizes

• Power law or “fractal” distribution of earthquake sizes (energy)

⇒ There is no characteristic size for earthquakes

⇒ It is not possible to answer this simple question:

“How big are earthquakes in a given region?”
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Mean Energy of Earthquakes

• Using the Gutenberg-Richter law, the mean energy:

〈E〉=
∫ ∞

min

ED(E)dE∝
∫ ∞

min

dE

E0.66
=∞

The mean radiated energy is infinite!

How can it be? The Earth has a finite energy content...
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What does it mean?

E(Joules) ' 60000 · 101.5M (roughly)

Magnitude Energy (Joules) Number Total energy
5 2× 1012 1000 2× 1015

6 6× 1013 100 6× 1015

7 2× 1015 10 2× 1016

8 6× 1016 1 6× 1016

In practice, the mean does not converge

⇒ This means that extreme (rare) events determine the dissipation

⇒ Big earthquakes are responsible of the energy release!

⇒ Bad news!!
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The GR law is telling us something about the physics of earthquakes
But what?

• “Domino theory”

M. A. Francisco

Tectonic fault: analogous to a domino-like network
Earthquake: chain reaction of topplings or avalanche
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• Branching process

Each mother leaves a random number n of daughters

Which will be the total number of offsprings?
i.e., domino topplings ≡ “activity”, proportional to energy
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• Probability distribution of total activity, 〈n〉< 1Conclusions 76
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At the end, the activity dies
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• Probability distribution of total activity, also for 〈n〉> 1Conclusions 77
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Finite probability of infinite activity
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• Probability distribution of total activity, including 〈n〉=1Conclusions 78
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All sizes are possible, power-law distribution
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⇒ Power law distributions are very difficult to achieve (〈n〉=1)

• After any toppling, we don’t know what will happen next

• The perturbation propagates or not to give rise a catastrophic event depending
on a huge number of microscopic details which are intrinsically out of control

• Consequences for predictability?
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• Another Example: Critical Points of Thermodynamic Phase Transitions

Magnetic material: atom = spin with 2 states

There exists a critical temperature Tc

? Above Tc: no magnetization, small clusters
? Below Tc: magnetization, one very large cluster
? At the precise value T =Tc ⇒ clusters of all sizes ⇒ power law!

1. Collective Properties of Earthquakes 17

Fractals in physics: critical points of phase transitions

• Magnetic material: atom = spin with 2 states

March 31, 2004 23:1 WSPC/Book Trim Size for 9in x 6in ws-book9x6

178 Complexity and Criticality

t < 0 t = 0 t > 0

Rb

Rb

Fig. 2.29 Real-space renormalisation of the Ising model on a two-dimensional square
lattice. The panels are windows of size ` = 80 inside larger lattices. The three panels
in the top row correspond to lattices in zero external field with reduced temperatures
t < 0, t = 0, t > 0 from left to right. In each of the three columns, the renormalisa-
tion transformation Rb is carried out twice from top to bottom, revealing large scale
behaviour. Coarsening is achieved by employing the majority rule with b = 3.

The real-space renormalisation reduces all lengths, including the corre-

lation length, by a factor b. If the system is not at the critical point, the

correlation length is finite and becomes shorter with each application of the

renormalisation transformation. The reduction in the correlation length is

associated with a flow away from the critical point. In terms of the reduced

T < Tc T = Tc T > Tc
Christensen & Moloney, Complexity and Criticality
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Self-organized criticality

• How is the required fine tuning achieved?

• The power-law response emerges as a consequence of the attraction of the
dynamics towards a critical point ⇒ sandpile paradigm Bak et al. PRL 1987

• Sandpile metaphor

? If there are few grains (flat pile)
⇒ small avalanches, pile grows

? If there are many grains (steep pile)
⇒ large avalanches, pile decreases

This mechanism makes the slope of the pile
fluctuate around the critical state
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Rockfalls

• Size measured in volume of rocks

p h y s i c s w e b . o r gP H Y S I C S W O R L D A U G U S T 2 0 0 4 35

that combine the clustering (i.e. the persistence, or memory)
of the events with the statistical distribution of their sizes, be it
heavy tailed or not.

There are certainly no easy answers to the question of
which distribution to use to estimate the risks posed by na-
ture’s hazards. But power laws do allow us to make conserva-
tive and realistic estimates of these risks. Furthermore, since
power laws are the only statistical distributions that are com-
pletely scale invariant, they offer a unique way to explore the
possibility of an underlying universality in nature.

Further reading
R J Adler et al. (ed) 1998 A Practical Guide to Heavy Tails: Statistical

Techniques and Applications (Basel, Birkhäuser)

S Hergarten 2004 Aspects of risk assessment in power-law distributed natural

hazards Natural Hazards and Earth System Sciences 4 309–313

B D Malamud et al. 2004 Landslide inventories and their statistical properties

Earth Surface Processes and Landforms 29 687–711

M Mitzenmacher 2004 A brief history of generative models for power law and

log normal distributions Internet Mathematics 1 226–251

J B Rundle et al. 2003 Statistical physics approach to understanding the

multiscale dynamics of earthquake fault systems Reviews of Geophysics 41
1019 10.1029/2003RG000135

D Sornette 2004 Critical Phenomena in Natural Sciences: Chaos, Fractals,

Self-organization, and Disorder: Concepts and Tools 2nd edn (Berlin, Springer)

D Stauffer 2004 Earthquakes power up Physics World June p23

D L Turcotte 1997 Fractals and Chaos in Geology and Geophysics 2nd edn

(Cambridge University Press)

D L Turcotte et al. 2002 Self-organization, the cascade model, and natural

hazards Proc. Natl Acad. Sci. USA 99 2530–2537

Bruce D Malamud is in the Environmental Monitoring and Modelling Research

Group at King’s College London, and is currently a visiting scientist at the

Oxford Centre for Applied and Industrial Mathematics, Mathematical Institute,

University of Oxford, UK, e-mail bruce@malamud.com

4 Examples of power-law distributions
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Power laws have been found to describe the frequency–size distributions of
many natural hazards. (a) Wildfires in the Mediterranean eco-region of the US.
Frequency densities, f, (i.e. the number of fires per unit area “bin” per year per
eco-region area) are plotted as a function of the area of the wildfire, AF. Fitting
the data with a power law gives excellent agreement with f = 1.0 × 10–5 AF

–1.3

(i.e. a straight line on logarithmic axes) for wildfire areas between about 0.01
to 1000 km2. (b) Rockfalls also follow such power-law behaviour. Here the
number of rockfalls per unit volume bin is plotted as a function of their
volume, VR, for two different datasets: an earthquake-triggered rockslide
event in Umbria, Italy, in 1997 (purple) and historical data from Yosemite
between 1980 and 2002 (green). Despite taking place under very different
conditions, the datasets follow a power law of the form 2.34VR

–1.07

remarkably well for rock volumes between 0.001 to 1000 000 m3.

a b
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Malamud, Phys. World 2004

? Purple color:
earthquake-triggered rockslide
event in Umbria (Italy) in 1997

? Green color:
rockfalling at Yosemite (USA)
from 1980 to 2002

Exponent 1.1

• Other similar phenomena:

? Landslides
? Snow avalanches
? Sediment gravity flows

in the oceans
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Rice-pile avalanches

Frette et al. Nature 1996
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Forest fires: Fires at Ontario (Canada), 1976–1996 (15308 fires)
584 D.L. Turcotte, B.D. Malamud / Physica A 340 (2004) 580–589

Fig. 2. Noncumulative frequency–area statistics of 15,308 #res (0:002 km26AF 6 1330 km2) in Ontario,
Canada, north of latitude 46◦, for the period 1976–1996 (data from the Ontario Ministry of Natural Re-
sources). Given is the dependence of forest-#re frequency densities f on forest-#re burned area AF . The
frequency densities have been divided by the length of the record to give a frequency per year. The straight
line correlation is with a noncumulative frequency–area power-law distribution (1) with exponent � = 1:38.

Forests during 1990–1991; (4) 298 #re areas in the Australian Capital Territory during
1926–1991. The four data sets come from a wide variety of geographic regions with
diJerent vegetation types and climates. In each case, the authors [16] found that the
noncumulative number of #res per year plotted as a function of burned #re area AF
correlates well with the power-law relationship (1), with �= 1:3–1.5.
Another example of forest #res is given in Fig. 2. This is the noncumulative fre-

quency–area statistics of forest #res in the province of Ontario, Canada, for all #res
north of latitude 46◦. Data, obtained from the Ontario Ministry of Natural Resources,
is for the period 1976–1996, and includes 15,308 #res with burned areas 0:002 km26
AF6 1330 km2. Because the forest-#re inventory is not complete (many smaller #res
are not included in the inventory), we use frequency densities f(AF) of the burned
areas AF :

f(AF) =
	NF
	AF

: (6)

The frequency density is the number of events in an equivalent ‘unit’ bin (for forest-#res
we use 1 km2). The probability density in (2) is equivalent to the frequency density
(6) normalized by the total number of events in the inventory.

• Size measured as burned area

• Trees store energy which
is rapidly released by fire

• Conclusion:
Forests have the largest number
of trees allowed by fires

Turcotte & Malamud, Phys. A 2004, also Malamud & Turcotte, Science 1998
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Volcanic eruptions

• Area covered by lava flows
in the Springerville volcanic
field, Arizona (USA) between
2.1 Myear and 0.3 Myear ago

Cumulative number of eruptions
versus area in km2

Lahaie and Grasso, JGR 1998
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Biological extinctions (?)

• Extinction measured as the percentage
of extinct families in periods of
4 million years

2. Natural hazards as Self-Organized Critical Phenomena 37

Sepkoski, Paleobio. 1993; Raup, Bad Genes... 1991, shown in Bak 1996
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Tropical cyclones (hurricanes):

• Dissipated Energy (PDI) of North Western Pacific typhoons, 1986–200767

∝ 1/PDI

Northwestern Pacific 1986–2007
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Power-law distribution: D(PDI)∝ 1/PDI A. Ossó et al. preprint 2009
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Rainfall: measured at one point of the Baltic coast, Jan-Jul 1999
2. Natural hazards as Self-Organized Critical Phenomena 32

VOLUME 88, NUMBER 1 P H Y S I C A L R E V I E W L E T T E R S 7 JANUARY 2002

A Complexity View of Rainfall

Ole Peters,1 Christopher Hertlein,1,2 and Kim Christensen1,*
1Blackett Laboratory, Imperial College, Prince Consort Road, London SW7 2BW, United Kingdom

2Fakultät für Physik, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße, Westbau, D-79104 Freiburg, Germany
(Received 18 June 2001; published 19 December 2001)

We show that rain events are analogous to a variety of nonequilibrium relaxation processes in Nature
such as earthquakes and avalanches. Analysis of high-resolution rain data reveals that power laws de-
scribe the number of rain events versus size and number of droughts versus duration. In addition, the
accumulated water column displays scale-less fluctuations. These statistical properties are the finger-
prints of a self-organized critical process and may serve as a benchmark for models of precipitation and
atmospheric processes.

DOI: 10.1103/PhysRevLett.88.018701 PACS numbers: 89.75.Da, 05.65. +b, 92.40.Ea

Rainfall and rainfall-related quantities have been
recorded for centuries [1,2]. All these measurements,
however, have the disadvantage of low temporal resolution
and low sensitivity. The rain measurements are based on
the simple idea of collecting rain in a container and mea-
suring the amount of water after a certain time. The time
intervals between readings are typically hours or days.
Even with the most sophisticated of these conventional
methods, the fine details of rain events cannot be captured
at all and very light rain might not be recorded due to
evaporation or insufficient sensitivity of the instrument,
making it impossible to address questions regarding single
rain events.

Recently, high-resolution data have been collected with
a compact vertically pointing Doppler radar MRR-2, de-
veloped by METEK [3]. The instrument is operated by
the Max-Planck-Institute for Meteorology, Hamburg, Ger-
many, at the Baltic coast Zingst �54±430N 12±670E� un-
der the Precipitation and Evaporation Project (PEP) in
BALTEX [4]. Rain rate, liquid water content, and drop size
distribution were obtained from the radar Doppler spec-
tra, based on a method described by Atlas [5–7]. At ver-
tical incidence, the Doppler shift can be identified with
the droplet fall velocity. As, in the atmosphere, larger
drops fall faster than smaller drops, spectral bins can be
attributed to corresponding drop sizes. For a given size,
the scattering cross section of the droplets can be calcu-
lated by Mie theory [8]. This yields the number density
of drops which is proportional to the spectral power di-
vided by the corresponding cross section. The rain rate
q�t� �

P
i niViyi, where ni is the number density of drops

of volume Vi falling with velocity yi . The detection thresh-
old for rain rates under the pertinent operation parameters
was qmin � 0.005 mm�h. Below this threshold, q�t� � 0
by definition.

Precipitation profiles up to some thousand meters alti-
tude can be observed. At present, the quantitative retrieval
is restricted to rain. Snow and hail can be identified from
the form of the Doppler spectra but have been excluded
from the quantitative analysis. The analyzed data refer to

250 m above sea level and have been collected from Janu-
ary to July 1999 with 1-min resolution.

The processes that make a cloud release its water content
are only very little understood. However, with the high
temporal resolution of 1 min, single rain events can be
identified and characterized. Previous work focused on the
rainfall during a fixed period of time [9–11]. What makes
the present analysis fundamentally new is the identification
of a rain event as the basic entity. We define an event as
a sequence of successive nonzero-rain rates. Sequences of
zero-rain rates in between rain events are called drought
periods. The event size is defined as the released water
column in mm, M �

P
t q�t�Dt, where Dt � 1 min, that

is, the time integral of the rain rate over an event. In Fig. 1,
the number density of rain events per year N�M� versus
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FIG. 1. The number density of rain events per year N�M�
versus event size M (open circles) on a double logarithmic scale.
A rain event is defined as a sequence of consecutive nonzero-rain
rates (averaged over 1 min). This implies that a rain event ter-
minates when it stops raining for a period of at least 1 min. The
size M of a rain event is the water column (volume per area)
released. Over at least 3 decades, the data are consistent with a
power law N�M� ~ M21.36, shown as a solid line.
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• A rain event is defined
as the continuous occur-
rence of rain between
drought periods of
minimum 1 minute

• Dynamics:

- Solar radiation provides
energy

- Evaporated water stores it
- If a saturation threshold

is reached ⇒ rain

Peters et al. PRL 2002
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Summarizing:

• SOC ⇒ sandpile dynamics and power-law distributions

• Many natural disasters ⇒ sandpile-like dynamics and power-law distributions

Does this mean that the previous natural disasters are SOC?

Or something else is necessary (?)
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First Confirmation of Self-Organized Criticality?

• Rain: there exist a critical point and the system is attracted close to it!5858

observed at Nauru, figure 6b, as well as those in the mid-latitudes (Peters et al.
2002). In figure 7b we show the avalanche-size distribution along with its known
exponent; in the thermodynamic limit of infinite system size, the distribution
would follow a power law over an infinite range. The analogy with atmospheric
event-size distributions suggests they can occur even for fixed, slow forcing—in
other words, a scale-free range of precipitation events is associated with the
organization towards the critical point in QE.

(b ) Implications of the exponential tails

In figure 6a it was shown that the distribution of the atmospheric tuning
parameter (the water vapour) has strongly non-Gaussian tails. There is a
Gaussian-like core, but the tails are much better described by exponentials. One
effect of these exponential tails is that we are able to observe the underlying
phase transition. In the Manna model, the distribution is highly Gaussian, with
the result that occurrences drop very rapidly above the critical point in the self
organizing case. To observe the behaviour above criticality, we needed to
introduce periodic boundaries. The question remains how it is possible that the
atmosphere ever fluctuates as far from criticality, or QE, as it does.

A possible answer is provided by tracer dispersion in forced advection–diffusion
problems, in which the tracer probability density distribution can have a Gaussian
core with exponential tails (e.g. Gollub et al. 1991; Majda 1993; Shraiman & Siggia
1994). This can occur, for instance, in the two-dimensional case

vtqCv$VqK k0V
2q Z f ; ð5:1Þ

(a) observed characteristics
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Figure 6. (a) Western Pacific observed characteristics from TMI data as a function of column water
vapour normalized by the critical value wc for each value of T̂ : probability density function of w for
precipitating points (four upper curves), precipitation variance conditioned on w (four middle
curves) and precipitation pickup curve (non-dimensionalized by amplitude a from (4.1) for each T̂).
(b) The precipitation event-size distribution for the Nauru ARM site time series.

J. D. Neelin et al.2594

Phil. Trans. R. Soc. A (2008)

Peters & Neelin, Nature Phys. 2006
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• For earthquakes (and others): are there other indications of criticality?

• Do power-law size distributions reflect some degree of self-similarity in time?

1 year of earthquakes with M ≥ 5 ⇔
10 years of earthquakes with M ≥ 6 etc.?

• Complex-System philosophy:

? Difficulties studying faults
∗ Interaction between faults, no isolated faults exists
∗ Problems assigning earthquakes to faults
∗ Ambiguity to identify and even define faults
⇒ Study spatially extended areas

? All earthquakes constitute a unique process
⇒ Do not distinguish between mainshocks, aftershocks, etc.

⇒ The robustness of the results will corroborate the coherence of the approach

Bak et al. PRL 2002
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Waiting times

• Consider a fixed spatial region

• Consider earthquakes with magnitude
larger than a threshold, M ≥ Mc

3. Correlations
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=⇒ Broad scale of times ⇒ Gutenberg-Richter gives a poor description!
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Worldwide seismicity for M ≥ 5, from 1973 to 20021. Recurrence-Time Distributions 5
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2. Waiting-Time Distributions & Scaling Laws: Earthquakes 29

Worldwide seismicity for M ≥ Mc, with Mc variable, from 1973 to 20021. Recurrence-Time Distributions 6
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Scale transformation of the axes

τ −→ Rc τ

D(τ,Mc) −→ D(τ,Mc)/Rc

with Rc(Mc) the rate of seismic activity: number of earthquakes per unit time

Scaling law:

D(τ,Mc) =Rcf(Rcτ)

A.C. PRL 2004

2. Universal scaling law for inter-event time distribution
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Scaling function:

f(θ)∝ 1
θ0.3

e−θ/1.4 θ≡Rτ
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Two main properties:

• Clustering

f(θ)∝ 1
θ0.3

e−θ/1.4

It is valid independently of the fit of f(θ)

• Scaling
D(τ,Mc) =Rcf(Rcτ)

In fact, the existence of clustering is clear before rescaling
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Poisson process

• A dice decides if an earthquake happens or not

? The dice has many faces
(probability of occurrence very small, p→ 0)

? The dice is thrown continuously in time, N →∞

Prob[ n events in N throwns]=
(

N
n

)
pn(1− p)N−n→

→ e−λλn

n!
=Prob[n events in time T ]

with pN ≡λ =RT . The waiting-time cumulative distribution function is

S(τ) ≡ Prob[waiting time ≥ τ ] =Prob[0 events in time τ ] = e−Rτ

⇒D(τ) = − dS(τ)
dτ

=Re−Rτ
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Clustering

• Fit of the scaling function: gamma distribution

f(θ)∝ 1
θ0.3

e−θ/1.4 θ≡Rτ

Note that rescaling imposes θ̄ =1
⇒ Only one parameter is independent

• The gamma distribution gives an increased probability for short waiting times
(in comparison with a Poisson process, f(θ) = e−θ ' 1 for θ < 1) = clustering

⇒ Earthquakes tend to attract each other

⇒ Counterintuitive consequences:

The longer you have been expecting for an earthquake
the longer you will still have to wait

A.C. PRE 2005
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Consequence of clustering: waiting-time paradox

• The longer you have been expecting for an earthquake
the longer you will still have to wait

3. Correlations
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Consequence of clustering: waiting-time paradox
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How is this paradoxical effect measured?

Expected Residual Recurrence Time

ε(τ0)≡〈τ − τ0 | τ > τ0〉=
∫∞

τ0
(τ − τ0)Dw(τ)dτ∫∞

τ0
Dw(τ)dτ

'
∑

∀i s.t. τi>τ0
(τi − τ0)

num of equakes s.t. τi > τ0
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• This result seems certainly paradoxical, as for example:

? If you are waiting for the metro, you expect the next train is approaching
? When you celebrate your birthday, you may feel you are consuming your life

• From a statistical point of view, this is only counterintuitive, as there are
counterexamples

? Newborns become “healthier” as time passes
? Companies become more solid with time

(it is not preferable to invest your money in a very new company!)

• For earthquakes, this seems even more counterintuitive:

? The increase of time implies the increase on stress on the faults
? The occurrence of earthquakes decreases the stress in some areas, but we

have no occurrence since the last one
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• Scaling law

D(τ,Mc) =Rcf(Rcτ)

Gutenberg-Richter law: Rc∝ 10−bMc

In terms of energy: Rc∝ 1/Eβ
c , so:

D(τ, Ec) =E−β
c f̂(E−β

c τ)

This is the condition of scale invariance for 2d functions:

F (x, y) = cF (x/a1, y/a2)⇒F (x, y) =xαf(y/xβ)

with f arbitrary, α = ln c/ ln a1 and β = ln a2/ ln a1

Why is this remarkable?
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Relation with renormalization-group (RG) transformations S. Daĺı
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• RG transformation:
The change of Mc (decimation)

plus the re-scaling with Rc

is analogous to a
renormalization-group transformation

2. Universal scaling law for inter-event time distribution
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(a)
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si

ba

(b) ↓ ↑ ↑ ↑ ↓
sI

ba

(c) ↓ ↑ ↑ ↑ ↓
sI

a

Fig. 2.30 Real-space renormalisation of the Ising model in one dimension. (a) The
lattice is divided into blocks, each containing b = 2 spins. (b) Each block is coarse
grained and replaced with a single block spin sI , which takes the value of the odd spin.
(c) All length scales are reduced by the factor b to obtain a renormalised version of the
original lattice.

each block survives. Since each spin has two nearest neighbours, each spin

appears twice in the exponent. Collecting each even spin in a single term,

we find

Z(N,K1) =
∑

odd
spins

∑

even
spins

exp

(
K1

N∑

i=1

sisi+1

)

=
∑

odd
spins

∑

even
spins

exp (K1[s1s2 + s2s3]) · · · exp (K1[sN−1sN + sNs1])

=
∑

odd
spins

2 cosh (K1[s1 + s3]) · · · 2 cosh (K1[sN−1 + s1]) , (2.210)

where the coarse graining sum over each of the even spins is readily per-

formed. For example, for the spin s2 that couples to spins s1 and s3,
∑

s2=±1

exp (K1s2[s1 + s3]) = 2 cosh (K1 [s1 + s3]) .

The pair of spins (s1, s3) can be in one of 22 = 4 microstates. However, the

right-hand side of this equation takes only two different values because of

Christensen & Moloney

Complexity and Criticality
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2. Renormalization for Earthquakes: M ≥ 6 for 1 year 424. Scaling Law as Invariance under a RG Transformation
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2. Renormalization for Earthquakes: M ≥ 6 for 10 years 424. Scaling Law as Invariance under a RG Transformation
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2. Renormalization for Earthquakes: M ≥ 5 for 1 year 424. Scaling Law as Invariance under a RG Transformation
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Mathematical results for renewal processes A.C. JSTAT 2009

(no correlations, magnitudes and times independent)

• Scaling ⇒ Invariance of seismicity under RG transformations

• RG Transformation = random thinning (decimation) + rescaling:

>D(s) =
pD(ps)

1− qD(ps)

with D(s) the Laplace transform of D(τ) and p≡R(M ′
c)/R(Mc), q≡ 1− p

• The only fixed point is Poisson >D(s) =D(s) ⇒ D(τ) =Re−Rτ

• Moreover, the Poisson process is the attractor for all waiting time distributions
with finite mean
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• Summary: for processes with no correlations and a finite mean
⇒ the Poisson process is a trivial fixed point

• But the observed D(τ) is not exponential

⇒ There must be correlations

• Correlations are fundamental to determine the form of D(τ)

• Short-range correlations do not seem enough to escape from Poisson

• Correlations should be long ranged (Lennartz et al., EPL 2008)

• A RG approach could provide scaling relations between the exponent of D(τ),
the exponent of correlations, and the Gutenberg-Richter exponent

• Connection with critical phenomena A.C. PRL 2005
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Accumulated number of earthquakes (normalized) versus time
with Ntot =84771 for Southern California and Ntot =46054 for worldwide
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⇒ worldwide seismicity is stationary, Southern California is not stationary
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Changing the spatial region: WW stationary seismicity up to 2.8◦ (300 km)
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Universal scaling law: also California, Japan, and Spain, for stationary periods
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ETAS model (epidemic-type aftershock sequence)

• Each earthquake (i) triggers other earthquakes with

? Probability proportional to the Omori law, 1/(t− ti)p

? and proportional to the productivity law, 10aMi (power law)
? Magnitude given by the Gutenberg-Richter law, 10−bM (power law)

• Hard mathematics show that

? The scaling function is different
? Even more, a scaling law cannot hold exactly!

⇒ there must be (very) slow variations with magnitude

⇒ the ETAS distribution renormalizes to an exponential

Saichev & Sornette, PRL 2006
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• Saichev & Sornette’s fit: 4 parameters: 49

agreement. According to Occam’s razor, this suggests that
the previously mentioned results on universal scaling laws
of interevent times do not reveal more information than
what is already captured by the well-known laws (i)–(iii)
of seismicity (Gutenberg-Richter, Omori, essentially), to-
gether with the assumption that all earthquakes are similar
(no distinction between foreshocks, mainshocks, and after-
shocks [18]), which is the key ingredient of the ETAS
model. Our theory is able to account quantitatively for
the empirical power laws found by Corral, showing that
they result from subtle crossovers rather than being genu-
ine asymptotic scaling laws. We also show that universality
does not strictly hold.

Our strategy to obtain these results is to first calculate
the PDF of the number of events in finite space-time
windows [17], using the technology of generating proba-
bility functions (GPF), which is particularly suitable to
deal with the ETAS as it is a conditional branching process.
We then determine the probability for the absence of earth-
quakes in a given time window from which, using the
theory of point processes, is determined the PDF of inter-
event times. Our analysis is based on the previous calcu-
lations of Ref. [17], which showed that, for large areas (L�
tens of kilometers or more), one may neglect the impact of
aftershocks triggered by events that occurred outside the
considered space window, while only considering the
events within the space domain which are triggered by
sources also within the domain.

Generating probability functions of the statistics of event
numbers.—Consider the statistics of the number R�t; �� of
events within a time window �t; t� �	. It is efficiently
described by the method of GPF, defined by �s�z; �� �

hzR�t;��i, where the angular brackets denote a statistical
average over all possible realizations weighted by their
corresponding probabilities. We consider a statistically
stationary process, so that �s�z; �� does not depend on
the current time t but only on the window duration �. For
the ETAS model, statistical stationarity is ensured by the
two conditions that (i) the branching ratio n (or average
number of earthquakes or aftershocks of first generation
per earthquake) be less than 1 and (ii) the average rate ! of
the Poissonian distribution of spontaneous events be non-
zero. The GPF �s�z; �� can then be obtained as [17]
 

�s�z; �� � exp
�
�!

Z 1
0
�1���z; t; ��	dt

�!
Z �

0
�1� z��z; t�	dt

�
; (2)

where ��z; t; �� is the GPF of the number of aftershocks
triggered inside the window �t; t� �	 (t > 0) by a single
isolated mainshock which occurred at time 0 and ��z; �� �
��z; t � 0; ��. The first (respectively, second) term in the
exponential in (2) describes the contribution of aftershocks
triggered by spontaneous events occurring before (respec-
tively, within) the window �t; t� �	.

Ref. [17] previously showed that ��z; t; �� is given by

 ��z; t; �� � G�1���z; t; ��	; (3)

where G�z� is the GPF of the number of first-generation
aftershocks triggered by some mainshock, and the auxil-
iary function ��z; t; �� satisfies to
 

��z; t; �� � �1���z; t; ��	 
��t�

� �1� z��z; ��	 
��t� ��: (4)

The symbol 
 denotes the convolution operator.
Integrating (4) with respect to t yields

R
1
0 ��z; t; ��dt �R

1
0 �1���z; t; ��	dt� �1� z��z; ��	 
 a���, so that ex-

pression (2) becomes
 

�s�z; �� � exp
�
�!

Z 1
0

��z; t; ��dt

�!�1� z��z; ��	 
 b���
�
; (5)

where b�t� �
R
t
0 ��t0�dt0 and a�t� � 1� b�t� � c�

�c�t�� .

Probability of absence of events.—For our purpose, the
probability Ps��� that there are no earthquakes in a given
time window of duration � provides an intuitive and power-
ful approach. It is given by

 P0��� � �s�z � 0; ��

� exp
�
�!

Z 1
0

��t; ��dt�!��!A���
�
; (6)

where ��t; �� � ��z � 0; t; �� and A��� �
R
�
0 a�t�dt ’

c
1�� ��=c�

1��, for �� c.
To make progress in solving (3)–(5), let us expand G�z�

in powers of z:

 G�z� � 1� n� nz� B�1� z�� � . . . ; (7)
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FIG. 1 (color online). Taken from Corral’s Ref. [10], plotting
the scaled [according to (1)] PDF of the recurrence times �
between successive earthquakes in various regions of the world,
scaled by their corresponding seismicity rates �. The PDFs have
been translated for clarity. The thin continuous lines are Corral’s
fits (12) while the thick continuous lines are our prediction (11)
based on ETAS model with the parameters � � 0:03, n � 0:9,
a � 0:76, and � � 1.

PRL 97, 078501 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
18 AUGUST 2006

078501-2

• But the ETAS model is not scale invariant (from its definition)!

• Try with a scale-invariant model?
For instance: Vere-Jones model, AAP 2005;

DS model, Lippiello et al. PRL 2007;
BASS model, Turcotte et al. GRL 2007
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• Unexpected pulses detected in the CRESST project for dark matter search at
the Gran Sasso Laboratory Åstrom et al. PLA 2006

Cryogenic detector (at milliKelvin) made by a sapphire monocrystal5. Actividad investigadora: Estructura de la sismicidad 43
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Comment on “Universal Distribution of Interearthquake Times”

J. Åström 2, P.C.F. Di Stefano4, F. Pröbst1, L. Stodolsky1∗, J. Timonen3,
1 Max-Planck-Institut für Physik, Föhringer Ring 6,

D-80805 Munich, Germany; 2 CSC - IT Center for Science,
P.O.Box 405, FIN-02101 Esbo, Finland; 3 Department of Physics,

P.O. Box 35 (YFL), FIN-40014 University of Jyväskylä,
Finland; 4 Institut de Physique Nucléaire de Lyon,

Université Claude Bernard Lyon I, 4 rue Enrico Fermi, 69622 Villeurbanne Cedex,
France; ∗ Corresponding author, email address: les@mppmu.mpg.de.

In a Letter earlier this year [1] and in a number of
preceeding publications [2][3][4], the probability distribu-
tions for the “waiting time” between earthquake events
have been discussed. In particular it appears that the
probability distribution for the number of events with
waiting time w, when expressed in terms of a suitably
scaled variable (w/w0) with w0 some characteristic time
constant, follows a universal function [4]. In this Com-

ment we would like to draw attention to the fact that
recently published data [5] of the CRESST collabora-
tion on microfractures in sapphire show the same fea-
tures. Indeed there is a great similarity, if not a remark-
able complete identity, of the probability distributions
expressed in this manner between the earthquakes and
the microfractures.
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FIG. 1: CRESST waiting time distributions. Upper curve:
microfractures, fit to ∝ w

−α
e
−w/w0 . Lower curve: photon-

induced events from a calibration run, fit to ∝ e
−w/w0 .

In Fig 1 we reproduce Fig 2 of ref [5]. The upper curve
is the data on microfractures, fit to

dN/dw ∝ w−αe−w/w0 (1)

with α = 0.33 and w0 = 0.0014 hrs. It will be seen there
is an excellent fit. The lower curve represents a test of
the apparatus and analysis, using photon-induced events

from an external radioactive source. These should follow
the Poissonian e−w/w0 and there is also a good fit.

According to Corral ( Physica A) the form Eq 1 de-
scribes the waiting times for earthquakes, and with the
same power, α = 0.33. Concerning the time scale param-
eter w0, it is essentially the inverse of the observational
or experimental event rate R since from Eq 1

1/R = w̄ = (1− α)w0 . (2)

The data used in the Figure satisfy this relation to
within a few percent, as would be expected from the good
fit. We find that raising the energy threshold in a data
set, and so reducing R, leads to a linear relation between
the fit w0 and R, as would be expected from Eq 2 with
a constant α.

Alternatively one could renounce fitting w0, and sim-
ply substitute w−1

0
= (1− α)R into Eq 1, use the exper-

imental R (=28 000 events/28.5 hrs), and fit for α. This
essentially one parameter fit is satisfactory and yields
α = 0.26.

Although the CRESST values for α thus vary some-
what according to the analysis and from run to run,
the parallelism between the two kinds of phenomena is
striking. These considerations, involving such widely
disparate time scales, energies, and material properties,
raise the question as to whether Eqs 1 and 2 do not rep-
resent a general law, applicable to many kinds of fracture
processes.

[1] A. Saichev and D. Sornette, Phys. Rev. Lett. 97, 078501,
(2006).

[2] A. Corral, Phys Rev. E 68, 035102 (2003); A. Corral,
Physica (Amsterdam) A 340, 590 (2004);

[3] N. Scafetta and B. J. West, Phys. Rev. Lett. 92, 138501,
(2004).

[4] P. Bak, K. Christensen, L. Danon, and T. Scanlon, Phys.
Rev. Lett. 88, 178501, (2002);

[5] J. Åström et al., Phys. Lett. A356 262 (2006), (arXiv.org:
physics/0504151); Nucl. Inst. Methods A559, 754 (2006).

? Radioactive contamination? ⇒ No Poisson distribution!
? Origin: nanofractures in the crystal due to the tight clamping of the detector
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• Acoustic emission from laboratory rock fractures Davidsen et al. PRL 20071. Same Scaling Function as for the Worldwide Case: Universality 23 3

Figure 1: (Color online) Probability density function of nor-
malized waiting times T/〈T 〉 for five different rock fracture
experiments (see Table I for details) and an earthquake cat-
alog from Southern California for comparison (see text for
details). The solid line corresponds to a fit based on Eq. (2)
with θ = T/〈T 〉 giving γ ≈ 0.8 and B ≈ 1.4.

Figure 2: (Color online) Probability density function of AE
adjusted amplitude A for the same rock fracture experiments
as in Fig. 1.

in [22]. Yet, P (θ) remains basically unchanged. More
importantly, even considering only events above a lower
threshold Ath, as for the data set To5 2 in Fig. 1, does not
affect P (θ). This indicates the robustness of our results.

This robustness is further confirmed by Fig. 3 which
shows P (θ) for a large selection of fracture experiments
(see Table I for details). Again, P (θ) can be well de-
scribed by Eq. (2). The slight variation in the fitted
values of γ and B can be attributed mainly to statis-
tical fluctuations and partially to measurement induced
biases: The relatively high value of γ for sandstone is a
consequence of the inability to detect the shortest wait-
ing times due to measurement restrictions absent in the
other experiments. This absence of short waiting times

(an order of magnitude compared with granite) signifi-
cantly biases the estimate of γ towards higher values.

Fig. 3 shows not only that for sandstone and differ-
ent types of granite the influence of the specific material
on P (θ) is neglectable but also that the type of experi-
ment (punch-through vs. constant displacement rate vs.
activity feedback control) has no significant influence on
P (θ). Moreover, Fig. 3 indicates that variations with Ath

are neglectable as well. Even restricting the included AE
events to arbitrarily selected areas within the rock sample
did not alter P (θ) (not shown). All these observations
strongly suggest that P (θ) given in Eq. (2) is a universal
result for rock fracture. It further implies that P (T ) is
self-similar over a wide range of activity rates spanning
two orders of magnitude for the experiments considered
here alone (see Table I).

Our results also indicate that the universal form of
P (θ) can be recovered for AE signals with largely vary-
ing AE rates, as for example during foreshock sequences,
if instantaneous rates are used. As Table I shows, the AE
signal of experiment Vo2 consists of at least two long sta-
tionary regimes, Vo2 a and Vo2 b, with different 〈T 〉’s.
Yet, the respective PDFs P (θ) are indistinguishable as
follows from Fig. 3. This implies that P (θ) for the com-
bined signal is the same as well [32].

While we have presented strong evidence that P (θ) is
universal for AE signals in rock fracture and earthquake
sequences, the correlations between subsequent waiting
times are very different. In Ref. [33], it was shown that
the distribution of waiting times between earthquakes
strongly depends on the previous waiting time, such that
small and large waiting times tend to cluster in time. We
find that this is not the case for the AE signals studied
here. In contrast, the conditional PDF P (θ|θ0) is inde-
pendent of the previous waiting time T0 with θ0 = T0/〈T 〉
and, thus, P (θ|θ0) = P (θ). This might be due to the
small number of pronounced foreshock and aftershock
clusters of which the latter are particularly dominant in
seismicity.

To summarize, we have shown that the probability den-
sity function for waiting times in laboratory rock frac-
ture is self-similar with respect to the AE rate and can
be described by a unique and universal scaling function
P (θ). Its particular form can be well approximated by a
Gamma function implying a broad distribution of wait-
ing times. This is very different from a narrow Poisson
distribution expected for simple random processes and
indicates the existence of a non-trivial universal mecha-
nism in the AE generation process. The similarity with
seismicity even suggests a connection with fracture phe-
nomena at much larger scales and might help to under-
stand this mechanism.

JD would like to thank C. Goltz for stimulating dis-
cussions.

? Materials: sandstones (wet conditions), granite (dry), Etna basalt (dry)
? Loading conditions: constant displacement rate, AE activity feedback control

of loading, punch-through loading
? Confined pressures: from 5 to 100 MPa
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• Enormous range of validity of the scaling law:

? From nanofractures involving the breaking of only several hundreds of covalent
bonds (5 keV ' 8 · 10−16 J)

to very large earthquakes (M ≥ 7 or radiated energy ≥ 2 · 1015 J )

⇒ More than 30 orders of magnitude of validity!

? Profound differences between the homogeneity and regularity of a monocrystal
at milli-Kelvin temperatures and the heterogeneity of fault gouge producing
(and produced by) earthquakes

⇒ Universality
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Conditional probability density (for recurrence times)

Dw(τ |X)≡ Prob [τ ≤ recurrence time < τ + dτ conditioned to X]
dτ

• For each τi, X will be different sets of values
(large, small, etc.) of

? Mi (current magnitude)
? Mi−1 (previous magnitude)
? τi−1 (previous recurrence time)

• if Dw(τ |X) =Dw(τ) ⇒ τ and X independent

• if Dw(τ |X) 6= Dw(τ) ⇒ τ and X correlated (linearly or nonlinearly)

3. Correlations
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3. Correlations
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Relation of τi−1 with τi for Southern-California stationary seismicity
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Dw(τi|τa ≤ τi−1 < τb) 6= Dw(τi) ⇒ τi does depend on τi−1 (positive correlation)
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Relation of Mi−1 with τi for Southern-California stationary seismicity
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Dw(τi|Mi−1 ≥ M ′
c) 6= Dw(τi) ⇒ τi does depend on Mi−1 (anticorrelation)
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Conclusion

• “The shorter the time between 2 earthquakes,
the shorter the time to the next”

• “The larger the magnitude, the shorter the time to the next earthquake”

⇒ Recurrence times depend on history

• Possible existence of long-range correlations [Lennartz et al. 2007]
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Dw(τi|Mi−1 ≥ M ′
c;Mc) only depends on τ and M ′

c −Mc
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Moreover, a new scaling law holds, if R(Mc,M
′
c)≡ 1/〈τ(Mc,M

′
c)〉,

⇒Dw(τi|Mi−1 ≥ M ′
c;Mc) =Rwf(Rwτi,M

′
c −Mc)
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Relation of Mi with τi for Southern-California stationary seismicity
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Dw(τi|Mi ≥ M ′
c)'Dw(τi) ⇒ Mi is independent on τi
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Magnitude probability densities conditioned to the preceding magnitude
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Dw(Mi|Mi−1 ≥ M ′
c)'Dw(Mi) ⇒ Mi is independent on Mi−1 (for τi > 30 min)
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Conclusion

• “The time you have been waiting for an earthquake does not influence its
magnitude”

• “The magnitude of a given event does not influence the magnitude of the next
one”

⇒ Magnitude seems to be independent on history

An earthquake does not know how big is going to be

But see Lippiello et al. PRL 2007
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Verbs in novel Clarissa, by S. Richardson (year 1748, 1 million words) 49
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⇒Scaling and clustering (attraction)! Fit: gamma distribution with γ =0.6
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Comparing verbs in Clarissa with earthquakes in S. California, 1995-199853
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remember, θ = `/¯̀
w for words, θ =Rτ = τ/τ̄ for earthquakes
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• The dynamics of earthquake occurrence shows self-similar clustering,
described by a universal scaling law

• The same law holds for fractures up to very small scales
(Davidsen et al., Åstrom et al.)

• The scaling law is equivalent to the invariance of the system
under renormalization transformation

• Correlations are essential to the existence of the scaling law

• References at http://einstein.uab.es/acorralc


