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0. Introduction 1

Traditional Reductionist Way of Doing

Case of physics:
Matter is complex

Find its ultimate constituents §

Case of earthquakes:
An earthquake is a very complex phenomenon whose physics is largely unknown

Study specific parts of the problem

Great 2004 Sumatra-Andaman earthquake: more than 100 papers! (by title)
15 in Nature or Science!



0. Introduction

Complementary Approach: Complex-Systems Philosophy
Can we learn something from collective properties?

Study emergent statistical properties of (relatively) large areas:
Concentrate on the whole rather than on the parts I

Hundreds of earthquakes are needed for a single paper!
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Gutenberg-Richter Law: most important law for the statistics of seismicity

For each earthquake with magnitude M > 8 there are about

* 10 with M > 7
* 100 with M > 6, etc...

Number of earthquakes
decays exponentially

N (M) oc10~2M

(with b~ 1)

Magnitude, M

Kanamori & Brodsky, Rep. Prog. Phys. 2004
Many small earthquakes, few big, good news!
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Distribution of magnitudes

We use the concept of probability density, defined as

Prob [M < magnitude < M + dM]|
dM

D(M) =

and estimated as

~ number of earthquakes with M < magnitude < M + dM

D(M
(M) total number of earthquakes x dM

D(M) ocdN(M)/dM
The Gutenberg-Richter law yields the same function for D(M)

D(M) x 1O_bMO(€_bln 10 M



1. Size Distributions, Power Laws & SOC: Energy of Earthquakes

Earthquake radiated energy:
energy is (roughly) an exponential function of magnitude, E o 101-°M

As D(E)dE = D(M)dM — D(E) = D(M)dM/dE

Energy follows a power-law distribution: D(FE)oc1/E110-67

18 19 20 21 22

log10(S in N m) S is seismic moment (

Main et al. Nature Geosci. 2008
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Power Laws and Scale Invariance
What is special about power laws?

Let us perform a scale transformation on a function y = F(x),

r— ' =azx,
!/ —
y—vy =ay.

In the new axes, the function F'(x) transforms into

F(x) — cF(z'/a)

Scale invariance means that the new function looks the same, F(x) = cF(z/a) I

The solution is given by a power law:

F(z)= Ax“ with ¢ =a“ A arbitrary,
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Invariance of power laws under scale transformations

1/2 —
exponential

Gaussian
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Invariance of power laws under scale transformations

1/ e—

exponential

Gaussian
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Example of scale invariance: fractals

Fractal: an object that shows the same structure at all scales

No characteristic scale Power-law distribution of structure sizes
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Scale Invariance of Earthquake Sizes

Power law or “fractal” distribution of earthquake sizes (energy)
— There is no characteristic size for earthquakes
= It is not possible to answer this simple question:

“How big are earthquakes in a given region?”



1. Size Distributions, Power Laws & SOC:

10

Mean Energy of Earthquakes

Using the Gutenberg-Richter law, the mean energy:

E)= [ Epwaps [ -

min main

The mean radiated energy is infinite!

How can it be? The Earth has a finite energy content...

O
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What does it mean?

E(Joules) ~ 60000 - 10*°*  (roughly)

Magnitude | Energy (Joules) | Number | Total energy
5 2 x 10%? 1000 2 x 101°
6 6 x 103 100 6 x 101°
7 2 x 10%° 10 2 x 101°
8 6 x 101° 1 6 x 1016

In practice, the mean does not converge
= This means that extreme (rare) events determine the dissipation

— Big earthquakes are responsible of the energy release!




1. Size Distributions, Power Laws & SOC: Models 12

The GR law is telling us something about the physics of earthquakes
But what?

“Domino theory”
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OTHER DETRIMENTAL EFFECTS

M. A. Francisco

Tectonic fault: analogous to a domino-like network
Earthquake: chain reaction of topplings or avalanche
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13

Branching process

Each mother leaves a random number n of daughters

Year 1 — one rabbit

wear toro — one rabhits

year i,
3 rabhits

wear 6, 8 rabhits

Which will be the total number of offsprings?
i.e., domino topplings = “activity”, proportional to energy
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Probability distribution of total activity, (n) <1
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Probability distribution of total activity, also for (n) > 1
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Probability distribution of total activity, including (n) =1
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Power law distributions are very difficult to achieve ((n) =1)

UMM st 11111111111

mE R A R R E ] A1) !'II ii|||-||l|||r|.|.|.

After any toppling, we don’t know what will happen next

The perturbation propagates or not to give rise a catastrophic event depending
on a huge number of microscopic details which are intrinsically out of control

Consequences for predictability?
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Another Example: Critical Points of Thermodynamic Phase Transitions
Magnetic material: atom = spin with 2 states
There exists a critical temperature T,

* Above T,.: no magnetization, small clusters
* Below T,.: magnetization, one very large cluster
* At the precise value T'="1T, clusters of all sizes power law!

R it ¥l | _-.:: i i Koy

s Wi L1 SRR L R

<1, =1 1T >1,

Christensen & Moloney, Complexity and Criticality
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Self-organized criticality

How is the required fine tuning achieved? |

The power-law response emerges as a consequence of the attraction of the
dynamics towards a critical point sandpile paradigm Bak et al. PRL 1987

Sandpile metaphor

* If there are few grains (flat pile)
small avalanches, pile grows

* If there are many grains (steep pile)
large avalanches, pile decreases

This mechanism makes the slope of the pile
fluctuate around the critical state
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Rockfalls

Size measured in volume of rocks

* Purple color:
earthquake-triggered rockslide
event in Umbria (ltaly) in 1997

* Green color:
rockfalling at Yosemite (USA)
from 1980 to 2002
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Exponent 1.1

Other similar phenomena:

Landslid 102
* -andsiides 10-13 10-10 10-7 104
* Snow avalanches

* Sediment gravity flows
in the oceans

rockfall volume (km3)

Malamud, Phys. World 2004
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Rice-pile avalanches

100

Frette et al. Nature 1996
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Forest fires: Fires at Ontario (Canada), 1976-1996 (15308 fires)

Size measured as burned area

Trees store energy which
is rapidly released by fire

Conclusion:
Forests have the largest number
of trees allowed by fires

1

04 2 - s ~ = 3
102 10 10" 10 10 102 10°

A F (km?2)

Turcotte & Malamud, Phys. A 2004, also Malamud & Turcotte, Science 1998
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Volcanic eruptions

Area covered by lava flows
in the Springerville volcanic

field, Arizona (USA) between
2.1 Myear and 0.3 Myear ago

Cumulative number of eruptions
versus area in km?

100

Lahaie and Grasso, JGR 1998
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Biological extinctions (?)

Phanerozoic Genera

Extinction measured as the percentage
of extinct families in periods of
4 million years
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Sepkoski, Paleobio. 1993; Raup, Bad Genes... 1991, shown in Bak 1996
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Tropical cyclones (hurricanes):

Dissipated Energy (PDI) of North Western Pacific typhoons, 1986—-2007

—t— Northwestern Pacific 198672007
— x 1/PDI

Power-law distribution: D(P.DI) X ]./PDI A. Ossé et al. preprint 2009
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Rainfall: measured at one point of the Baltic coast, Jan-Jul 1999

A rain event is defined
as the continuous occur-
rence of rain between
drought periods of
minimum 1 minute

Dynamics:

- Solar radiation provides
energy

- Evaporated water stores it

- If a saturation threshold
Is reached rain
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Peters et al. PRL 2002
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Summarizing:

SOC sandpile dynamics and power-law distributions

Many natural disasters sandpile-like dynamics and power-law distributions

Does this mean that the previous natural disasters are SOC?

Or something else is necessary (?)
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First Confirmation of Self-Organized Criticality? I

Rain: there exist a critical point and the system is attracted close to it!
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Peters & Neelin, Nature Phys. 2006
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For earthquakes (and others): are there other indications of criticality?

Do power-law size distributions reflect some degree of self-similarity in time?

1 year of earthquakes with M > 5 <
10 years of earthquakes with M > 6 etc.? |

Complex-System philosophy:

* Difficulties studying faults
Interaction between faults, no isolated faults exists
Problems assigning earthquakes to faults
Ambiguity to identify and even define faults
Study spatially extended areas
* All earthquakes constitute a unique process
Do not distinguish between mainshocks, aftershocks, etc.

The robustness of the results will corroborate the coherence of the approach

Bak et al. PRL 2002
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Waiting times

Consider a fixed spatial region

Consider earthquakes with magnitude
larger than a threshold, M > M,

I© Compute waiting time as the

time between consecutive earthquakes
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i=1,23...

Broad scale of times Gutenberg-Richter gives a poor description!



2. Waiting-Time Distributions & Scaling Laws: Earthquakes

Worldwide seismicity for M > 5, from 1973 to 2002

T (seconds)




2. Waiting-Time Distributions & Scaling Laws: Earthquakes

Worldwide seismicity for M > M., with M. variable, from 1973 to 2002

|
10*
T (seconds)
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Scale transformation of the axes

T — R.T1

D(r,M.,) — D(r,M.)/R.

with R.(M.) the rate of seismic activity: number of earthquakes per unit time |

Scaling law:

D(T7 Mc) — Rcf<Rc7->
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A.C. PRL 2004 R7 (no units)




2. Waiting-Time Distributions & Scaling Laws: Scaling Law

Scaling function:

N
f(0) 703 o/t
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32

Two main properties:

Clustering

1
f(e) o W 6—0/1.4

It is valid independently of the fit of f(6)

Scaling
D(7_7 Mc) — Rcf(RcT)

In fact, the existence of clustering is clear before rescaling
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33

Poisson process

A dice decides if an earthquake happens or not

* The dice has many faces
(probability of occurrence very small, p — 0)
* The dice is thrown continuously in time, N — oo

Prob[ n events in N throwns| = ( fj )p”(l —p)N_” —
A" .
— e~ "— = Prob|n events in time T]
n!

with pN = A= RT'. The waiting-time cumulative distribution function is
S(7) = Prob[waiting time > 7] = Prob[0 events in time 7] = e~ 1"

D(t)= — dflf) — Re BT
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Clustering

Fit of the scaling function: gamma distribution

]
v
\]

1
f(8) o 5m e/t 0

Note that rescaling imposes 6 =1
Only one parameter is independent |

The gamma distribution gives an increased probability for short waiting times
(in comparison with a Poisson process, f(8) =e=? ~ 1 for # <1) = clustering
Earthquakes tend to attract each other
Counterintuitive consequences:

The longer you have been expecting for an earthquake
the longer you will still have to wait

A.C. PRE 2005



2. Waiting-Time Distributions & Scaling Laws: Clustering

35

Consequence of clustering: waiting-time paradox

The longer you have been expecting for an earthquake
the longer you will still have to wait §

Waiting Time Paradox
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time
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35

Consequence of clustering: waiting-time paradox

The longer you have been expecting for an earthquake
the longer you will still have to wait

Waiting Time Paradox
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35

Consequence of clustering: waiting-time paradox

The longer you have been expecting for an earthquake
the longer you will still have to wait

Waiting Time Paradox
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35

Consequence of clustering: waiting-time paradox

The longer you have been expecting for an earthquake
the longer you will still have to wait

Waiting Time Paradox
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36

How is this paradoxical effect measured?

Expected Residual Recurrence Time

fOO(T — 70) Dy (T)dT

70

ZVi S.t. 7'7;>7'0(T7; _ TO)

e(10) =(T —To|T > T0) =

—+— SC 19881991 M > 2.0
SC 1988-1991 M > 2.5

% SC 1988-1991 M > 3.0

= WW 1973-2002 M > 5.0
WW 1973-2002 M > 5.5

-o-- WW 1973-2002 M > 6.0
WW 1973-2002 M > 5.0 )

— e(0) with vy = 0.70,a = 1.43 %"

P X’r

0.0001 0.001 0.01 0.1
R 7 (dimensionless)

[2° Dy, (T)dT - num of equakes s.t. 7; > 7
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This result seems certainly paradoxical, as for example:

* If you are waiting for the metro, you expect the next train is approaching
* When you celebrate your birthday, you may feel you are consuming your life

1
From a statistical point of view, this is only counterintuitive, as there are
counterexamples
* Newborns become “healthier” as time passes
* Companies become more solid with time
(it is not preferable to invest your money in a very new company!)
1

For earthquakes, this seems even more counterintuitive:

* The increase of time implies the increase on stress on the faults
* The occurrence of earthquakes decreases the stress in some areas, but we
have no occurrence since the last one
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Scaling law

D(Ta Mc) — Rcf(RcT)

Gutenberg-Richter law: R, x 10— 5Me

In terms of energy: R.o<1/EP, so:

D(r,E.)=E;” f(E;"r)

This is the condition of scale invariance for 2d functions:

F(x,y) =cF(z/ay,y/aa) — F(z,y) =z f(y/z")

with f arbitrary, « = Inc¢/Ina; and 8= Inas/Ina;

Why is this remarkable?



2. Waiting-Time Distributions & Scaling Laws: RG Transformations 40

Relation with renormalization-group (RG) transformations s. Dali I
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Relation with renormalization-group transformations S. Dali
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RG transformation:

The change of M, (decimation)

plus the re-scaling with R,

is analogous to a
renormalization-group transformation

Christensen & Moloney

Complexity and Criticality

Magnitude
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2. Renormalization for Earthquakes: M > 5 for 1 year
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2. Renormalization for Earthquakes: M > 6 for 10 years
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Mathematical results for renewal processes

A.C. JSTAT 2009
(no correlations, magnitudes and times independent)

Scaling Invariance of seismicity under RG transformations

RG Transformation = random thinning (decimation) + rescaling:

~ pD(ps)
TR =72 qD(ps)

with D(s) the Laplace transform of D(7) and p= R(M.)/R(M.), g=1—p
The only fixed point is Poisson TD(s) = D(s) — D(7) = Re %7 I

Moreover, the Poisson process is the attractor for all waiting time distributions
with finite mean
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Summary: for processes with no correlations and a finite mean
the Poisson process is a trivial fixed point

But the observed D(7) is not exponential

There must be correlations
Correlations are fundamental to determine the form of D(7) |
Short-range correlations do not seem enough to escape from Poisson
Correlations should be long ranged (Lennartz et al., EPL 2008)

A RG approach could provide scaling relations between the exponent of D(7),
the exponent of correlations, and the Gutenberg-Richter exponent |

Connection with critical phenomena A.C. PRL 2005
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Accumulated number of earthquakes (normalized) versus time
with N, — 84771 for Southern California and NV;,; — 46054 for worldwide

—— worldwide, M > 5
Southern California, M > 2
i stationary part

L

1975 1980 1985 1990 1995
time (years A.D.)

2000

worldwide seismicity is stationary, Southern California is not stationary
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Changing the spatial region: WW stationary seismicity up to 2.8° (300 km)
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2. Waiting-Time Distributions & Scaling Laws:

Universal scaling law: also California, Japan, and Spain, for stationary periods
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ETAS model (epidemic-type aftershock sequence)

Each earthquake (%) triggers other earthquakes with

* Probability proportional to the Omori law, 1/(t — t;)P
x and proportional to the productivity law, 104 (power law)
x Magnitude given by the Gutenberg-Richter law, 107 (power law) I

Hard mathematics show that

* The scaling function is different I
* Even more, a scaling law cannot hold exactly!

there must be (very) slow variations with magnitude

the ETAS distribution renormalizes to an exponential

Saichev & Sornette, PRL 2006
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Saichev & Sornette’s fit: 4 parameters:

But the ETAS model is not scale invariant (from its definition)!

Try with a scale-invariant model?

For instance: Vere-Jones model, AAP 2005;
DS model, Lippiello et al. PRL 2007;
BASS model, Turcotte et al. GRL 2007
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Unexpected pulses detected in the CRESST project for dark matter search at
the Gran Sasso Laboratory Astrom et al. PLA 2006
Cryogenic detector (at milliKelvin) made by a sapphire monocrystal
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waiting time w in hrs

* Radioactive contamination? B No Poisson distribution!
* Origin: nanofractures in the crystal due to the tight clamping of the detector
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Acoustic emission from laboratory rock fractures Davidsen et al. PRL 2007
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x Materials: sandstones (wet conditions), granite (dry), Etna basalt (dry)

* Loading conditions: constant displacement rate, AE activity feedback control
of loading, punch-through loading

* Confined pressures: from 5 to 100 MPa
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Enormous range of validity of the scaling law:

* From nanofractures involving the breaking of only several hundreds of covalent
bonds (5 keV ~ 8-10716 J)

to very large earthquakes (M > 7 or radiated energy > 2-10%° J )
More than 30 orders of magnitude of validity!
* Profound differences between the homogeneity and regularity of a monocrystal

at milli-Kelvin temperatures and the heterogeneity of fault gouge producing
(and produced by) earthquakes

Universality
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Conditional probability density (for recurrence times)

Prob |7 < recurrence time < 7 4 dr conditioned to X]|
dr

D, (1| X) =
1

For each 7;, X will be different sets of values
(large, small, etc.) of

x M;  (current magnitude)
*x M;_1 (previous magnitude)
*x T;i—1 (previous recurrence time)

O
—
N
=]
+
or—
=
o0
[av]
-
-~

if Dy (7|X) = Dy(7) 7 and X independent

if Dy (7|X) # Dy(7) 7 and X correlated (linearly or nonlinearly) |
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Relation of 7;,_; with 7; for Southern-California stationary seismicity

—+— S. California, M > 2,0 < 1,1 < o0
S. California, M > 2, 1,1 < 300 s

-~-%-- S. California, M > 2, 7,_; < 1000 s

-~z S, California, M > 2, 1,1 < 3000 s
S. California, M > 2, 1,_; > 3-10* s

10000 100000
7; (seconds)

lU)
o)
-
o)
O
D
=z
=
V
1
K<
V
S
£
Q

Doy (7i|ma < i1 < 1) # Dy(7) 7; does depend on 7;,_1  (positive correlation)
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Relation of M, _; with 7; for Southern-California stationary seismicity

) (seconds™)

/
C

M= M,
M= M, +0.5
M= M, +1
M' =M, +15
M= M, +2
- M= M, +25

Al
Il
=
B
)

10*
7; (seconds)

Dy (7| M;—1 > M) # D (7;) 7; does depend on M;_1 (anticorrelation)
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Conclusion

“The shorter the time between 2 earthquakes,
the shorter the time to the next”

“The larger the magnitude, the shorter the time to the next earthquake”
Recurrence times depend on history

Possible existence of long-range correlations [Lennartz et al. 2007]
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w(Ti|M;—1 > M!; M.) only depends on 7 and M/ — M,
From M! — M. = 0 (bottom) to M — M. = 2 (top)

) (no units)
2

/
C
—_
-

[N)

—— M!=1.5
M! =2
o Ml =25
e M =3
M =35
—+— M! =5
M) =55
x-- M! =6

>

T
<
=
2

/
c

0% 10 107!
7 /{Ti(M., M!)) (no units)

<Ti(M7

Moreover, a new scaling law holds, if R(M., M) =1/{t(M., M})),
Dw(Ti|M'—1 > M/ ) wf( wTiy Mé I Mc)
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Relation of M, with 7; for Southern-California stationary seismicity

From M. = 1.5 (bottom) to M, = 3.5 (top)

10°
7; (seconds)

Dy (15| M; > M) >~ D,,(7;) M, is independent on T;
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Magnitude probability densities conditioned to the preceding magnitude

Dy (M;|M;—1 > M)~ D,,(M;) M; is independent on M;_1 (for ; > 30 min)
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Conclusion

“The time you have been waiting for an earthquake does not influence its
magnitude”

“The magnitude of a given event does not influence the magnitude of the next

2

one

Magnitude seems to be independent on history

An earthquake does not know how big is going to be

But see Lippiello et al. PRL 2007
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Verbs in novel Clarissa, by S. Richardson (year 1748, 1 million words)

0.1

/N

>
— 0.01
Q

0.001 ¢, s, Clarissa, 10000 < n, < 31622
Clarissa, 3162 < n,, < 10000
0.0001 , Clarissa, 1000 < n,, < 3162
i , Clarissa, 316 < n,, < 1000
le — 005 Clarissa, 100 < n,, < 316

—+— verbs, Clarissa, 31 < n,, < 100

te =000 505 0.0001 0,001 001 0.1

Scaling and clustering (attraction)! Fit: gamma distribution with v=0.6



2. Waiting-Time Distributions & Scaling Laws: New Earthquake Model 63

Comparing verbs in Clarissa with earthquakes in S. California, 1995-1998

0.1

/N

>
~— 0.01
Q

0.001
0.0001
le — 005

le = Q0 56500001 0.000 001

remember, § = ¢/¢,, for words, @ = RT —7/7 for earthquakes
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The dynamics of earthquake occurrence shows self-similar clustering,
described by a universal scaling law

The same law holds for fractures up to very small scales
(Davidsen et al., Astrom et al.)

The scaling law is equivalent to the invariance of the system
under renormalization transformation

Correlations are essential to the existence of the scaling law

References at http://einstein.uab.es/acorralc



