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How big can an earthquake be?

Gutenberg-Richter Law (1954) P(>|\/|) ~ 10°M (b~1)

== Seisnicmoment M, =mADuU
M = (2/3)log( M, )-6

(Kanamori,Anderson 1975 ) Universality of @ ~ 0.7
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Sequences of aftershocks

Omorilaw  (JCSIUT,1894)

Mas(t) ~ (c+1) P

p~1

C depends on M main shock and M lower

cutoff

(Kagan 2004, Shcherbakov et al 2004, Lise et al 2004)

Productivity law

N,s(M) ~ 102M

(Helmstetter 2003, Felzer et al 2004,

Helmstetter et al 2005, 2006)

a—b

At timet after amain shock at t=0
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Omori’s law
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Waiting time distribution

Dt timeinterval between successveevents M > M . lower cutoff
magnitude

All events (foreshocks, mainshocks, aftershocks) are considered on the same footing
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= Bak et al (PRL 2002) divided Californiain sub-regions of size | and computed the
distribution N(Dt,M_) ineach sub-region. They find the unified scaling law

Dt* N, ,, (Dt) = f (10™™1% Dr)

Average number of events with
M>M_ occurring in aregion of
sizel inthetimerange Dt

= Corral (PRL, 2004) rescaling Ct by

the average rate in the area = Corral. PRL 2004
universal scalinglaw for the probability [ g T T
density uf By
D(Dt,M.)=RM) f(RM)DY) & [

holds also for Japan, Spain, New Zeland... 7 E i3 srcgrs it

scaling function not universal (different e B S ool

areas are characterized by different rates) wre e zars b, Yot :




Clustering

Omori law  =-—p temporal clustering
Spatial clustering —
& Earthquakes are clustered along hierarchical fault structures

@ Ipocenter distribution has fractal dimension df » 2.2
(Kagan and Knopoff, GJRAS 1980)

@ Correlation dimension for epicenters D, »1.5
(Helmstetter and Sornette, PRE 2002)

& Generalized dimensions for the epicenter distribution of California
and Southern Italy (Davidsen and Goltz, GRL 2004; Godano et al, GJI 1996)

& Scale free networks of aftershocks, degree distribution has exponent
?» 2. (Baiesi and Paczuski, PRE 2004)



Power lawsin natural hazards

Forest firesin Ontario (Canada) 1976-1996
| Turcotte & Malamud 2004

8 -1.38
J=33545-

A P=0.996

Exponent 1.
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T>>T,

critical opalescence

<<T
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@divergence of correlation range

@divergence of fluctuations

@Self-smilarity ——= the largest cluster is fractal




Diffusion Limited Adagr egation



‘ Power laws and scaling \

Near the critical point the main physical properties exibit power law behaviour
Nice properties of power laws === invariant under rescaling!

Uppose y=f(x) =x
lakethe scaletransformation X ® X'= bX y ® y' = Ccy
Inder rescaling f (X) ® f (X') — Cf (XI / b)

c = b® thefunctionisinvariant

Scaleinvariance f (I x) = g(l ) f (x)

homogeneous functions



For functions of more than one variable

f(12%1°y) =1 f(x,Y) :
1Y Y |

Choose I — y_

Obtan

f(X y) — 1/b.|:(y a/le) — 1/bg(y alb )



‘ Aretherecorrelationsin seismicity?

he conditional probability D,, (Dt | Dt,) of awaitingtime 2t followir
‘waiting time ?tdoesdependon ?t g (Livinaet al, PRL 200

ystematic analysis of stationary seismicity for world wide and California catalo
1 terms of conditional probability distribution indicates.

Corral, Tectonophys. 20

Positive correlations between waiting times; short ?1 closeto each other

the shorter thetimeto get an earthquake, the shorter till the next
Anticorrelation between waiting times and magnitudes:

large M tend to increase number of short 2t and decreaselarge 2t

the bigger the size of an earthquake, the shorter thetimetill the next
N0 significant correlations between earthquake magnitudes:

values compar ablewith statistical fluctuations
an earthquake does not know how big it will become

avidsen & Paczuski (PRL 2005) === \aitingtimesand distancesbetween epicenter

of successive earthquakesare independent



Magnitude correlations

valuating the <M; M;>- <M;>* gives values comparable with statistical noise

=d data represent the correlations evaluated in a catalog where magnitudesare
eshuffled with respect to occurrencetime == uncorreated magnitudes
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| Spatio-temporal correlations
Lippiello, LdA, Godano, PRL 2008
Ve define for any couple of successive events of the NCEDC catal og:

Dr. =|r,, - ' | epicenter distance, D[i — ti+1 - ti time distance
or the magnitude Dm — m+1 - m and DIT] — m+1 - I’T]I
vhere we reshuffle the previous magnitude, with i * | arandom index

m-m
Ve neglect eventsin atemporal window | 107
fter each earthquake of magnitude m (Helmstetter, Kagan, Jackson JGR 2005)

Ve evaluate the conditional probability _
# couples of subsequent events with both

N(m,, t Dm < my, Dt <t
(DM <m, | Dt <t) = |(\|n()§ )O)
0

# couples of subsequent events with
Dt <t,




=> We calculate the conditional probabilities |P(Dm <m, |Dr, <r,)| and

P(Dm <m, | Dt <t,)| inthe Cdiforniacatalog

of the reshuffled catalog
(Gaussian distributed)

and for 10% redizations \
' ' A B T

(DM’ <m, | Dr, <,

(DM <m, | D <t,)

|

ro=10km
tozlh

my=0

|
k TR
8,44 046 | 0,48 0,5 0,52 0,154 0,56
P(Ax<x, Ay <y,)

dP(my | ) = P(Om <m, | Iy <t,) - QM [ &) >s (M [ )

Evidence for magnitude correlations



i P ddP(”b | ro) probability
"o=10km : ~ difference
0.061 -0,03 drn)
L -0,06
.’ L W L. For m, <0 theprobability islarger
> 0,04 m, < in the real than in the reshuffled catalo
i | where magnitudes are uncorrel ated
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The next earthquake tendsto
have magnitude close but
smaller than the previous one

Experimental data
Numerical data




dculating  P(Dr, <1, |Dm <my,) and P(D <t, | Dm < my)

mm=d> |nfluence of temporal / spatial clustering on magnitude correlations

=) Better description of seismicity if space —time — magnitude

correlations aretaken into account

mgy= -2
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Branching model for seismicity ‘

/etreat seismicity asa point processin time, where {m ('[i )} the history of past events

Given the history, one assumesthat each event can trigger future onesaccording to
a two point conditional rate and thereforetherate of events of magnitude mat timet is

r (m@) [{m@)}) = a r (mt) | m)) + nP(m)

It <t
where misa constant rate of independeﬁt sour cesand P(m) their magnitude distribution

1the ETAS model (Ogata, JASA 1988) the magnitude misindependent of previousevents

r(l\/li(t) | Mi(ti)) = P(m)g(ti ) tj;mj) M 1O-bmi10amj (ti ) tj + C)-l

Magnitude correlations must be introduced via a multiplicative term

g Im m | (Vere-Jones, AAP 2005)
S(m - m) =10 ’



Dynamical scaling

Lippiello, Godano, LdA, PRL 2007, 20

We assume that the magnitude difference fixes a characteristic time

_ b(m; - m;)
t, =t,10

where | 0 IS a constant measured in seconds

and that I‘(m(ti) | mj(tj)) isinvariantfor Dt ® | Dt = ?

Thistime represents the temporal scale for correlations:
A m=2 earthquake is correlated to a previous m=6 event over a time scale of about 2 years

A m=5 earthquake is correlated to a previous m=6 event over a time scale of few days



Thereforethe conditional rate becomes I (m (€) | m (tj)) = Fé I
with timerescaled by t;
where F(x) isa normalizable function

=)
On the bagis of this scaling hypothesiswe recover the GR law:

y ¥
Total number of 6. (m(t) | my(t,))dt =t ,10° b(m- my) d:(x)dX
t, 0

daughter earthquakes

and theOmori law: T (Mt - ) = ¢y (M(t) | (my(t,)) P(my)dm,

Rate of m events 10 bm ¥

at timet t 3 d:(z)dz




Numerical catalog

By choosing explicitly the function F we can generate a catalog of events

F(2)= Al(Z +9q) or F(z) = Al(e’ - 1+Q)

At t=0 choose arandom event with min [m, ., mg |

t — t+1 choose arandom m

Evaluate the probability of the event m(t) by contribution of all ratesdueto

t. O

r{m) | mt,))=F 'mm;
r )= §t10< p

Compar e probability with random number to select event

previous events my(t))

and constant rate of independent sourcesm

Construct a catalog of 245000 events (30 year California catalog)

Gutenberg Richter law

Waiting time distribution



F(Z) — A/(ez -1+ g) Gutenberg Richter law
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‘ Spatio-temporal formulation

he probability to have
[mm+dm] [t,t+dt] [F,r+dr]
e next earthquake in

P(t,r,m=a Pt-t,|r-7|mm)
J

= Dt® | Dt
statistical properties are invariant provided that
Dr ® | "Dr

Pm® Dm+ (1/b)log|



We introduce two characteristic time scales

L = kthb(mj-mi) rijllH =k |- [

leading to the scaling behavior with Dtij :ti - tj

et . Dr. O
P(Dt,,Dr,,m, m) = Dt. "G§¢—, r”HI
8Dtij Dt.. p
0 &Dr o)
» Dt Gé L G, —1 T
Duﬂ thJ %)
where
A B
G(X) = =7 G,(y) =
- 1+g, Ty +g,



—

At t=0 choose a random event with m in[m, ., my | at random epicenter Moo
on a square lattice

t— t+1 choosearandom m

Evaluate the probability of the event m(t) by summing contributionsof all rates
dueto previous events m(t;) and constant rate of independent sourcesm

Compar e probability with random number to select event

o
Choose a mother among all previous events accor ding to the probability Glgt”'
Dt.

Given the mother m* (t*) at T , determine the epicenter FJ from
* & F - F* O
(t, - )Y "G,e—L—— T — H » 0.5
(tj -t ) g

diffusion process



i P ddP(”b | ro) probability
"o=10km : ~ difference
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=121

The probability Ptohave M3 3  earthquakes during January 2007 due to past
seismicity. Recorded events (yellow stars) are closely located near the maximum of P.



I I Lippiello, Godanc
‘Generallzed Omori Law ipielo, Godan

Given amain shock M,, & t=t,,, therate of aftersnocks with M>M,

nt)u (t+c) P M)
Shcherbakov et a 2004 c(M,) = c10 Pt

— My, -M, -M,)/d
*Kagan 2004  STAI c =10Mw-Mi- M) many small eventscloseto't,, are lost

>We calcul ate the aftershock probability with the DS approach choosing F(z) = p'AJ‘rl
z
¥ A é a-t Opu
PAs(t'tM’M||MM):(\flMp(M,thM,tM):—log@ﬁg M: l:J "M 3 MI
M, b 8 toK [ H
For t-t, >t oK recover  (t-t,)" behaviour

— |c(M,) =t ;K =t ,10®"PMu=MIT " fixesthe onset of the Omori behaviour




K =10®/P)(Mu-M)
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Peng et al made a careful
analysis for shallow
earthquakes in Japan and
found 5 times more events
in the first 200 sec after the
main event.

PAS(t - tM) =

5
OIMy Pss(t - ty, M, | My )P(My,)

3

Peng et d,
JGR 2007




Recent results m

@ Log-Likehood for the DS model with a PSRS approach (sub. JGR)

@ New method for aftershock detection based on variability coefficient
(JGR 2009)

@Analysis of inter-time and inter-distance distributions for sequences
(characteristic spatial length scale)

@Spatial distribution of aftershocks
(PRL 2009)

@3d molecular dynamics simulations of granular media within rough faults

static stress triggering scenario
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