(1) Earthquake triggering by stresschanges: Observations and modellingusing the rate and state friction law

(2) Seismic monitoring of Sechilienne rockslide, french Alps

Earthquake triggering by stress changes: Observations and modelling using the rate and state friction law

> Agnès Helmstetter (LGIT Grenoble) and Bruce Shaw (LDE0 Columbia Univ)

http://www-lgit.obs.ujf-grenoble.fr/ahelmste/index.html

Earthquake triggering

Obervations of aftershocks:

when? where? scaling with mainshock size?

Rate and state model :

relation between stress change and seismicity

Applications:

triggering by heterogeneous static stress change afterslip and slow earthquakes triggered by stress changes aftershocks triggered by afterslip

Observations of aftershock sequences

- duration \approx 10 yrs indep of M
- short-time cutoff for $t \approx 1 mn = catalog incompleteness?$

Spatial distribution of aftershocks

- relocated catalog for Southern California
 [Shearer et al., 2004]
- triggering distance increases with M
- max triggering distance:
 R ~ 7 rupture lengths
 - ~ $0.07 x 10^{m/2} \,\mathrm{km}$

• mean triggering distance $d(m) \approx 0.01 \times 10^{0.5m} \text{ km} \sim \text{rupture length}$

• max distance \approx 7L

Earthquake triggering by stress changes

Aftershocks triggered by:

Static stress changes?

Afterslip?

Earthquake triggering by stress changes

Static stress change

 \odot permanent change \rightarrow easy to explain long time triggering

 $\ensuremath{\textcircled{\circ}}$ fast decay with distance $\sim 1/r^3 \rightarrow$ how to explain distant aftershocks?

Dynamic stress change

Slower decay with distance ~ 1/r → better explains distant aftershocks
 Short duration → how to explain long time triggering?
 Secondary aftershocks or permament change in permeability? (Brodsky and others)

Postseismic relaxation

Afterslip, fluid flow, viscoelastic relaxation ...

- \odot Slow decay with time, ~ seismicity rate \rightarrow easy to explain Omori law
- © Smaller amplitude than coseismic stress change

Rate-and-state friction law $V_1 \rightarrow V_2 > V_1 \rightarrow V_2 \rightarrow V_2 > V_1 \rightarrow V_2 \rightarrow$

• friction law

$$\frac{\tau}{\sigma} = \mu = \mu_0 + A \ln\left(\frac{V}{V^*}\right) + B \ln\left(\frac{\theta}{\theta^*}\right) \qquad [Dieterich, 1979]$$

• state variable $\theta \approx$ age of contacts

$$d\theta/dt = 1 - V\theta/D_c$$

- lab :
 - $A \approx B \approx 0.01$, depend on T, stress, gouge thickness, strain...
 - $D_{c}\approx\!1\text{--}100\mu\text{m},\,$ depends on roughness and gouge thickness

Rate-and-state friction law and EQs

time

Relation between stress and seismicity

- rate & state friction law
- 1 fault = slider block, stick slip regime
- infinite population of independent faults
- stress changes modify the slip rate and advance or delay the failure time
- time advance/ delay function of stress change and initial slip rate
- relation between seismicity rate and any stress history [Dietrich, 1994]

Relation between stress and seismicity

• *Dieterich* [2004] model is equivalent to

R: seismicity rate $R_0 = R(t=0)$ $N(t)=\int^t R(t)dt$ r: ref seismicity rate for $d\tau/dt = \tau'_r$ τ : coulomb stress change (=0 at t=0) t_a : nucleation time $= A\sigma/\tau_r'$

Example periodic stress change

$$A\sigma \ln\left(\frac{R}{R_0}\right) + \frac{N\dot{\tau}_r}{r} = \tau$$

- $\tau(t) = \cos(2\pi t/T) + \tau'_r t$
- If T» t_a $R(t) \sim d\tau/dt$
- If T « t_a $R(t) \sim exp(\tau/A\sigma)$
- In general there is not « simple » relation between stress change and seismicity!

Seismicity rate following a static stress change

[Dieterich, 1994]

- For a stress increase
 Omori law for c « t « t_a
 R~ rupture area ~10^M
 realistic aftershock duration
- Requires very large stress !
 σ=100MPa
 A=0.01 (lab)

 $\Delta \tau = 15$ MPa >> EQ stress drop!

Static stress changes and aftershocks

• stress change dislocation of length L: $\tau(r) \sim (1-(L/r)^3)^{-1/2} - 1$

- Very few events for r>2L
- «diffusion» of aftershocks with time
- Shape of R(r) depends on time, very # from τ (r)
- Difficult to guess triggering mechanisms from the decrease of R(r)

Coseismic slip, stress change, and aftershocks:

• Model: planar fault, uniform stress drop, and R&S model

• Real data: most aftershocks occur on or close to the rupture area

→ Slip and stress must be heterogeneous to produce an increase of stress and thus R on parts of the fault

Seismicity rate and stress heterogeneity

Seismicity rate triggered by a heterogeneous stress change on the fault

$$R(t) = \int R(t, \tau(\vec{r})) d\vec{r}$$

=
$$\int_{-\infty}^{\infty} R(t, \tau) P(\tau) d\tau$$

- R(t, τ) : R&S model, unif stress change [Dieterich 1994]
- $P(\tau)$: stress distribution (due to slip heterogeneity or fault roughness)

Goals

- seismicity rate R(t) produced by a realistic $P(\tau)$
- inversion of $P(\tau)$ from R(t)

$$P(\tau)$$

Stress heterogeneity and aftershock time decay

- For an exponential pdf $P(\tau) \sim e^{-\tau/\tau_0}$
- → Omori law $R(t) \sim 1/t^p$ with $p=1 A\sigma/\tau_o$
- $p \leq 1$, **7** if «heterogeneity» τ_o **7**

• colored lines: EQ rate for a uniforme τ $R(t,\tau)P(\tau)$ from $\tau=0$ to $\tau=50$ MPa

• black: global EQ rate, heterogeneous τ : $R(t) = \int R(t,\tau)P(\tau)d\tau$ with $\tau_o/A\sigma=5$

Slip and shear stress heterogeneity, aftershocks

Modified « k^2 » slip model: $U(k) \sim 1/(k+1/L)^{2.3}$ [Herrero & Bernard, 1994]

Stress heterogeneity and aftershock time decay

Aftershock rate on the fault with R&S model for modified k² slip model

Short times $t \ll t_a$: apparent Omori law with $p \le 1$ Long times $t \approx t_a$: stress shadow $R(t) < R_r$

Modified k² slip model, off-fault stress change

- distance d<L from the fault: $\tau(k,d) \sim \tau(k,0)e^{-kd}$ for d«L
- fast attenuation of high frequency au perturbations with distance

Modified k² slip model, off-fault aftershocks

- seismicity rate and stress change as a function of d/L
- quiescence for d >0.1L

t d L

Inversion of stress distribution from aftershock rate

• We invert for $P(\tau)$ from R(t) for individual

aftershocks sequences in California and stacked sequences in Japan

- select aftershocks close to fault plane
- assume $P(\tau)$ is gaussian
- stress drop σ_0 fixed to 3 MPa
- A \sigma = 1 MPa
- invert for t_a and standard deviation τ^*

Parkfield 2005 M=6 aftershock sequence

Inversion of $P(\tau)$ for real sequences

Sequence	p	τ* (MPa)	t _a (yrs)
Morgan Hill M=6.2, 1984	0.68	6.2	78.
Parkfield M=6.0, 2004	0.88	11.	10.
Stack, 3 <m<5, japan*<="" td=""><td>0.89</td><td>12.</td><td>1.1</td></m<5,>	0.89	12.	1.1
San Simeon M=6.5 2003	0.93	18.	348.
Landers M=7.3, 1992	1.08	**	52.
Northridge M=6.7, 1994	1.09	**	94.
Hector Mine M=7.1, 1999	1.16	**	80.
Superstition-Hills, M=6.6,1987	1.30	**	**

* [Peng et al., 2007]

** we can't estimate τ^* because p>1

Conclusion - triggering by heterogeneous static stress changes

R&S model with stress heterogeneity explains

- short-times triggering
 - Omori law with $p \leq 1$
 - *p* decreases with stress variability
- Long times quiescence for $t \approx t_a$
- in space : clustering on/close to the rupture area

Problems:

- inversion: stress drop not constrained if catalog too short
- we don't know $A\sigma$: 0.01 or 1MPa??
- secondary aftershocks?
- can't explain *p*>1 : post-seismic stress relaxation?

Earthquakes triggering by aseismic stress changes (afterslip, viscous relaxation, fluid flow,...)

• Modelling afterslip and slow slip events with a simple slider-block model and R&S friction

$$\begin{array}{c|c} & & & & \\ \hline & & & \\ \hline & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

• Triggering of aftershocks by afterslip

Observations: example for 2005 m=8.7 Nias EQ

Afterslip and

Co- and after- slip

[[]Hsu et al, Science 2006]

Interactions between afterslip and aftershocks

- relation between coseismic and postseismic slip?
- can we use afterslip to constrain the rheology of the crust (stable/unstable)?
- relation between afterslip and aftershocks?
- mechanisms for aftershock triggering?

Observations of postseismic behavior

2005 m=8.7 Nias [*Hsu et al, 2006*]

Observations of postseismic behavior

Spatial distribution of afterslip and aftershocks

2002 m=7.8 Denali [Freed et al, JGR 2006]

Observations of afterslip

- afterslip on average scales with co-seismic slip
- afterslip moment is usually a few % of coseismic
- But it may be larger than coseismic moment (eg, Parkfield 2004)
- Slip rate usually decays as 1/t

... but hard to distinguish from exponential decay

• Afterslip is usually associated with velocity-hardening faults and earthquakes associated to velocity weakening?

[Marone et al 1991, Perfettini and Avouac 2003, ...]

- Some overlap between aftershocks, co- and post-seismic slip
- → temporal or spatial changes in the friction law parameters?

Rate-and-state friction and fault dynamics

From lab experiments, A and B are expected to vary with T and σ Variations of B/A can explain the distribution of seismicity with depth

0 1)	B <a< th=""><th>Upper crust aseismic</th><th>Velocity hardening</th></a<>	Upper crust aseismic	Velocity hardening
th (T and	B>A	Seismogenic zone	Velocity weakening
dep	B <a< td=""><td>Lower crust aseismic</td><td>Velocity hardening</td></a<>	Lower crust aseismic	Velocity hardening

Rate & state friction and fault behavior

Rate-and-state friction law and afterslip

• friction law [Dieterich, 1979]

 $\mu = \mu_0 + A \log(V/V_0) + B \log(\theta/\theta_0) = \mu_0 - k(\delta - V_1 t)/\sigma$ $d\theta/dt = 1 - V\theta/D_c$

- relaxation or nucleation of a slip instability after a stress step
- inertia and tectonic loading negligible:

 $V_I \ll V \ll$ coseismic slip rate

Numerical & analytical analysis Fault behavior after a stress step

Different behaviors are observed in numerical simuations as a function of friction parameters B/A, stiffness k/k_c and stress μ :

Aftershock:

Slip instability triggered by stress change

Slow EQ

Slip rate increase followed by relaxation

Afterslip

Relaxation toward background rate

Fault behavior – phase diagram

Fault behavior controlled by B/A, stiffness k and stress (V>>V_I) [Helmstetter and Shaw, 2009]

- slip accelerations
- if $k < k_B$ and $\mu > \mu_a > \mu_{ss}$
- slip instabilities
- if $k < k_c$ and $\mu > \mu_l > \mu_{ss}$
- steady-state
- $d\theta/dt=0$
- $V = D_c/\theta = \text{const}$ $\mu_{ss} = \mu_0 + (B-A) \ln(V/V_0)$

 $k_{\rm B} = B\sigma/D_{\rm c}$ $k_{\rm c} = (B-A)\sigma/D_{\rm c}$ $\mu_{\rm I} = \mu_{\rm ss} - B \ln(1-k/k_{\rm c})$ $\mu_{\rm a} = \mu_{\rm ss} - B \ln(1-k/k_{\rm R})$

Fault behavior

Slip rate history

- **# behaviors**: aftershocks, slow EQ, and afterslip
- **# afterslip regimes,** with slope exponent=*B*/*A* or1
- # characteristic times t*
- analytical solutions for μ », « or $\approx \mu_{ss}$

[Helmstetter and Shaw, 2009]

Unstable case: B=1.5A $k=0.8k_c$ $\mu_0>\mu_1$: aftershock $\mu_1>\mu_0>\mu_a$: slow EQ $\mu_0<\mu_a$: afterslip

> Stable case B=0.5A $k=2.5 |k_c|$ only afterslip $\mu_0 > \mu_{ss}$ $\mu_0 = \mu_{ss}$ $\mu_0 < \mu_{ss}$

Slip history - 1D model and afterslip data

Data:

- GPS and creep-meter for 2004 m=6 Parkfield [Langbein et al , 2006]
- GPS data for 2005 Nias m=8.5 [Hsu et al , 2006]
- GPS data for 2002 Denali m=7.8 [Freed et al, 2006]

Models : each dataset fitted individually with

- Omori law: $V=V_0/(t/c+1)^p + V_1$
- Rate-dependant frictin law friction law : $\mu = \mu_0 + (B \cdot A) \ln(V/V_0)$

[Marone et al., 1991; Hsu, 2006; Perfettini et al, 2004, 2007, ...]

 $V = V_0 / [1 + exp(-t/t_r)(1/d-1)] + V_1$

• Full R&S friction law with constant tectonic rate :

invert for A,B,k,D_c, V_I,V₀ and μ_0

Results - 1D model and fit of afterslip data

- All models provide a good fit to the data for the 3 EQs
- full R&S friction law usually gives a better fit than rate-dependant friction or than Omori law, but with more inverted parameters
- Inversion is not constrained: many very # models give similar slip history and very good fits, but sometimes unphysical values (A=100000, $D_c=1$ km, ...)
- Models with A>B or B>A often provide similar fit

Conclusions : rate & state and fault behavior

Afterslip and aftershocks

mainshock ⇒ coseismic stress change ⇒ afterslip ⇒ postseismic reloading
 ⇒ aftershocks?

[Rice and Gu, 1983, Dieterich 1994, Schaff et al 1998, Perfettini and Avouac 2004, 2007; Wennerberg and Sharp 1997, Hsu et al 2006, Savage 2007a,b, ...]

- Afterslip also unloads other parts of the fault and modifies aftershock time decay
- we use the R&S model of *Dieterich [1994]* to model triggering due to afterslip $\sim d\tau/dt$

$$A\sigma \ln\left(\frac{R}{R_0}\right) + \frac{N\dot{\tau}_r}{r} = \tau$$

Aftershocks triggered by afterslip

• numerical solution of R- τ relation assuming reloading by afterslip

• when p<1, R(t) ~ $d\tau/dt$ for «large times»

Aftershocks triggered by afterslip

• Afterslip reloading $d\tau/dt \sim \tau'_0/(1+t/t^*)^q$ with q=1.3

• apparent Omori exponent p(t) decreases from 1.3 to 1

Aftershocks triggered by afterslip

- coseismic stress step + unloading or reloading by afterslip
- afterslip stress rate

afterslip reloading (m>0) : p=1

[Dieterich 1994]

[Dieterich 1994]

• afterslip unloading (m<0) : p=-m

Conclusions: aftershocks triggered by afterslip

- R&S friction law can be used to model aftershock rate
- afterslip is likely a significant mechanism for aftershock triggering
- but less important than static stress changes, because slip (and σ) is smaller
- EQ rate does not scale with stress rate

Conclusions: EQ triggering and R&S model

heterogeneous stress step

 \rightarrow long time quiescence

R(t

time

afterslip (+coseismic step) $\tau(t)$ \rightarrow Triggering or quiescence

 \rightarrow Omori law decay with p< or >1, depends on amplitude and time decay of stress-rate

Conclusions

ⓒ Rate & state fits well observations

aftershock rate (t,r), afterslip, slow slip events

[©] little constrain on mechanisms and parameters

static / afterslip triggering?
stress change?
velocity weakening / strengthening?

© complex behavior, yet very simplistic model

1 slider block / continuous model
no inertia
no heterogeneity of friction law parameters
no secondary aftershocks