Rheology of granular flows: Role of the interstitial fluid

Olivier Pouliquen, IUSTI, CNRS, Aix-Marseille University Marseille, France

Motivations : debris flows, landslides, avalanches, silo

Not Fault!!!

Low level of pressure:

10-100 kPa in natural events 0.1-1 kPa in the experiments

=> Rigid and non breakable particles

Particles of different sizes + liquid (non newtonian) + complex topography + unsteady flows ...

In this talk :

1) rheology of dry granular flows ?...

2) What happen when coupling with the interstitial fluid matters ...?

Dry granular material: Collection of grains

> No cohesion No brownian motion No fluid interaction

... Only contact interactions

But not so easy...

Quasi-static deformations : Soil mechanics and plasticity

Focus on initial deformation

What happens :

 \Rightarrow at large deformations ?

 \Rightarrow for fast deformations ?

Kinetic theory for rapid granular gases

Binary collisions+inelastic collisions

⇒ constitutive equations coupling Density, velocity and granular temperature

But if not enough energy is injected:

 \Rightarrow finite duration contact, \Rightarrow multiple contact,

Different flow configurations studied both experimentally and numerically

plane shear under controlled normal stress

Lois et al 2005 Da Cruz et al, PRE 05 GdR Midi, Eur. Phys. J 04

One imposes P and $\dot{\gamma}$

Shear stress τ ? Volume fraction ϕ ? A single dimensionless number (inertial number)

$$I = \frac{\dot{\gamma}d}{\sqrt{P/\rho_s}}$$

(Savage 84, Ancey et al 99) Inertial number

$$I = \frac{\dot{\gamma}d}{\sqrt{P/\rho_s}}$$

* ratio between 2 times :

 $1/\dot{\gamma}\,$: time scale of the mean shear

 $d/\sqrt{P/\rho_s}$: microscopic time for rearrangement

$$I = \frac{\dot{\gamma} d}{\sqrt{P / \rho}}$$

Da Cruz et al, PRE 05 GdR Midi Eur. Phys. J 04

One imposes P and $\hat{\gamma}$

Shear stress τ ? Volume fraction ϕ ?

$$\tau = \mu(I)P$$
$$\Phi = \Phi(I)$$

remark: No velocity weakening

An empirical friction law:

$$\tau = \mu(I)P$$

$$\mu(I) = \mu_s + \frac{\mu_2 - \mu_s}{I_0/I + 1}$$

 $\phi(I) = \phi_{max} - AI$

Constant pressure

And shear at constant volume fraction ??

Bagnold Proc. R. Soc 54
$$\tau = f_1(\Phi)\rho_s d^2 \dot{\gamma}^2$$
 find to be consistent at PRE 07
Lemaitre PRE 05
Da Cruz et al PRE 05 $P = f_2(\Phi)\rho_s d^2 \dot{\gamma}^2$ find the function of the presence of the p

φ

$$\tau = \mu(I)P$$
$$\Phi = \Phi(I)$$

allows to describe (not perfectly) velocity profiles on inclined plane,

Let's go further...

Predicted velocity and volume fraction profiles Rheology $\mu(I)$ predicts - V α h^{1.5}- (h-z)^{1.5} d Φ =cte

Gdr Midi et al, 2004, Da cruz et al 2002, Silbert et al 2001

-Pb with thin flows and close to free surface

Gdr Midi et al, 2004, Da cruz et al 2002, Rajchenbach 2003

$$\tau = \mu(I)P$$
$$\Phi = \Phi(I)$$

allows to describe (not perfectly) velocity profiles on inclined plane, on pile,...

Let's go further...

3D generalisation: a visco-plastic model (Jop et al Nature 06)

assumptions :

1) P isotropic

2) $\dot{\gamma}_{ij}$ and τ_{ij} are colinear (Savage 83, Goddard 86, Schaeffer 87,...)

$$\dot{\gamma}_{ij} = \frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i}$$

 $||\dot{\gamma}|| = \sqrt{1/2} \dot{\gamma}_{ij} \dot{\gamma}_{ji}$

3D generalisation of the friction law : granular flows as a viscoplastic fluid (Jop et al Nature 06)

assumptions:

1) P isotropic 2) $\dot{\gamma}_{ij}$ and τ_{ij} are co-linear

(Savage 83, Goddard 86, Schaeffer 87,...)

$$\begin{aligned} \frac{\partial u}{\partial x} + \frac{\partial v}{\partial z} &= 0, \\ \rho_s \phi \left(\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial z} \right) &= \rho_s \phi g \sin \theta - \frac{\partial P}{\partial x} + \frac{\partial \tau_{xx}}{\partial x} + \frac{\partial \tau_{xz}}{\partial z}, \\ \rho_s \phi \left(\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial z} \right) &= -\rho_s \phi g \cos \theta - \frac{\partial P}{\partial z} + \frac{\partial \tau_{zx}}{\partial x} + \frac{\partial \tau_{zz}}{\partial z}, \end{aligned}$$

Pressure dependent viscosity

flows on a heap : a full 3D problem

(P. Jop et al Nature 06)

Flow between rough lateral walls:

Jop et al , Nature 2006

Jop et al, Phys. Fluids 2007

Initiation of the flow?

Long wave instability in granular flows (Y. Forterre, JFM 06)

Experimental Setup : forcing of the instability

Forterre and Pouliquen JFM 02

Lajeunesse et al Phys. Fluids 2004,2005 Lube et al JFM 2004, Larrieu et al JFM 2006, Staron & Hinch JFM 2005, Lacaze et al Phys. Fluids 2008

...

Lajeunesse et al 05

Lacaze and Kerswell (preprint 08)

Relative Success of the visco-plastic description.

A starting point to adress other configurations... (simulating the pressure dependent visco-plastic rheology is non trivial...)

But there are problems when approaching the solid...

Limits of the viscoplastic approach:

Quasistatic flows (shear band, finite size effect....)
A need for non local approach...

2) Transient flows when preparation plays a crucial role
Velocity profile

Shear bands in quasi-static flow

(Forterre & Pouliquen ARFM 08, Jop PRE 08)

Not captured by the viscoplastic approach

Flow threshold hysteresis Finite size effects

Not captured by the viscoplastic approach

Limit of a local rheology ?

to go further?

Role of the fluctuations ? Aranson and Tsimring PRE,01, Louge Phys. Fluids 03, Josserand et al 06 Lemaitre 02 Bazant 07 Nott 08 Behringer 08... Role of the correlations ?

Pouliquen et al 01, Ertas and Halsey 03, Mills et al 08 Jenkins and Chevoir 01, Jenkins Phys. Fluids 06,

...

Link with plasticity of other amorphous and glassy systems

Evidence for non local effects: Microrheology experiments

M. Van Hecke 2008 Pouliquen, Forterre, Nott

Self activated process

Pouliquen & Forterre, Phil. Trans, 2009

Limits of the viscoplastic approach:

1) Quasistatic flows (shear band, finite size effect....) A need for non local approach...

2) Transient flows when preparation plays a crucial role

Influence of the initial Volume fraction on the Collapse of a pile.

Daerr & Douady 99

Quasi-static case : critical state theory

Reynolds Dilatancy

Visco plastic theory :

shear rate dependence but no dilatancy critical state theory :

dilatancy but no shear rate dependence

Shear rate dependent critical state theory

Shear rate dependent critical state theory :

$$\tau = (\mu(I) + \tan \Psi)P$$

$$\tan \Psi = K(\Phi - \Phi_{eq}(I))$$

$$\frac{1}{\Phi}\frac{d\Phi}{dt} = \dot{\gamma}\tan\Psi \qquad \qquad I = \frac{\dot{\gamma}d}{\sqrt{P/\rho}}$$

3D generalisation :

t

$$\begin{split} \tilde{\gamma}_{ij} &= \gamma_{ij} - \frac{1}{3} \delta_{ij} \gamma_{kk} \\ I &= \frac{\|\tilde{\gamma}\| d}{\sqrt{P/\rho_s}} \end{split}$$

$$\begin{aligned} \tan \psi &= K(\Phi - \Phi_c(I)) \\ \tau_{ij} &= (\mu(I) + \tan \Psi) \frac{\tilde{\gamma}_{ij}}{\|\tilde{\gamma}\|} \\ \frac{\partial u_i}{\partial x_i} &= \tan \Psi \|\tilde{\gamma}\| \end{aligned}$$

Application to a dry flow:

Initiation of flow on an inclined plane:

Comparison with DEM simulations with N. Taberlet...

Changing time scales... by putting the granular material in water (Cassar et al, Phys. Fluids 06)

A naive idea :

fluid only plays a role by changing the time scale of rearrangements

$$au = P \mu(I)$$
 with $I = \mathring{\gamma} t_{micro}$
viscous : $t_{micro} = \frac{\eta_f}{P}$
dry : $t_{micro} = \frac{d}{\sqrt{P/\rho_s}}$

Cassar et al. Phys. Fluids 05

0.2

0

36

38

0.8

.0

And dilatancy ???

And Pore pressure ??

Cf In Faults Rice JGR 75, Rudnicki JGR 84, ...

How to explain the variety of landslides observed in nature ?

Iverson et al , (2000) Science

Large scale experiments in the USGS facility

Dense preparation

Courtesy of Dick Iverson

Loose preparation

Courtesy of Dick Iverson

In faults: rice JGR 75, Rudnicki JGR 84, ...

A simple experiment:

Dense sample

Loose sample

Experimental procedure

Triggering time

in the dense case

Triggering time

Deformation

Two phase flow model

submarine avalanches :

Depth averaged approach (Pitman and Le 05) :

Submarine granular avalanches:

Scaling of the triggering time

Pore Pressure

Maximum acceleration

Conclusions for submarine avalanches

A simple critical state approach+ a viscoplastic rheology + two phase flow equations

 \Rightarrow Semi quantitative predictions in the complex dynamics of the flow initiation of submarine avalanches

Beyond the depth averaged approach ? Question of the numerical implementation of such models?

Conclusions for constitutive modeling of granular flows

Visco-plastic approach gives the order zero of viscous behavior of granular flows

It can serve as a base for further developments: -irregular particles? -cohesive particles? -polydispersed materials? -breakable particles? (dilatancy, underwater granular flows, cohesive flows...)

-link with the microscopic physics? -how to capture non local effects (role of fluctuations, link with glassy systems,....)?

Towards more complex granular media:

Polydispersed : Felix et Thomas PRE 04

Rognon et al 06...

granular matter with fluid interactions

Cohesive granular matter:

Rognon et al 08 Halsey et al 06 Richefeu et al 06 ...

Mickael Pailha Pierre Jop, Cyril Cassar **Yoël Forterre** Pascale Aussillous Maxime Nicolas Prabhu Nott Jeff Morris Neil Balmforth Bruno Andreotti Olivier Dauchot...

