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Self-organized Criticality
Much effort has been devoted to understanding
the ubiquity of scale invariance (power-law behavior)
in nature. Why?

Function: F (x) = Axα (power-law)

(a) Scale invariance:
Rescaling the function’s argument preserves the shape of
the function:

F (cx) = A(c x)α = Acα xα = cα Axα︸︷︷︸
F (x)

thus
F (c x) ∝ F (x)

The same kind of ’physics’ govern phenomena in all
scales.
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Self-organized Criticality

Scale Invariance⇐⇒ Universality

Phase transitions (thermodynamics & statistical mechanics):
I Near the transition, certain quantities display power-law

distributions, that are characterized by critical exponents.
I Systems with the same critical exponents are said to belong to the

same universality class.
I Systems in the same universality class can be shown to share the

same fundamental dynamics.

Different phenomena, described by power laws with the
same scaling exponent share common features in the
dynamical processes that generate the power-law;

its dynamics must not depend on details of the system.
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Self-organized Criticality

(b) Power-law distributions decay slowly:

• They have long tails, an “excess” of big events;

• Average = ???
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Self-organized Criticality

Self-organized Criticality (SOC) is an attempt to explain the
emergence of scale invariance or power-law behavior in nature.

In a phase transition, the critical point is unstable:

It divides different basins of attraction, that led to different
stationary states.
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Self-organized Criticality

However, to explain the ubiquity of power-laws, the
’critical’ state must be stable:

With the concept of SOC, we have a mechanism explaining
how non equilibrium extended systems can evolve naturally to
an stable critical state.
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Self-organized Criticality

This ’critical’ state is statistically stationary, defining
punctuated equilibrium:

The behavior of out of equilibrium, extended systems, that,
under a slow drive, instead of evolving slowly and
continuously, stay static (in an apparent equilibrium) for
long periods of time, and, from time to time, experience fast
relaxation processes, that led the system to another
(statistically similar) equilibrium state.

Distribution functions of quantities describing those relaxation
processes exhibits power-law behavior.
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There is no general accepted definition of SOC.

Scaling emerges as an interplay between a threshold
dynamics, and a quasi-static driving (Jensen,1998).

The prototype of SOC is the sandpile model,
proposed by Bak, Tang and Wisenfeld in 1897.

The addition of a grain of sand can cause an
avalanche,

the distribution function of the size of
avalanches displays a power-law, that is, there
is no typical avalanche size; the slope of the
pile oscillates around an average value.
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Earthquakes are good candidates to SOC:
• Two distinct time scales
• Power-law behavior

The OFC model is based
on the Burridge and Knopoff stick-slip spring block model
(Burridge, R. and Knopoff, 1967)

I The upper plate moves with V
I Static friction between blocks

and lower plate
I Blocks are connected one to

another by springs
I Blocks are connected also to the

upper plate through springs.
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OFC model

• block i feels elastic forces due to blocks i − 1 and i + 1

• block i also feels an elastic force due to the pull of upper plate

• there is static friction between block i and lower plate

• when a block slides, it stops at the point where ∑ F elastic = 0

• discretize time: in time t , only block i moves;
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In two dimensions:
A simple basic physics calculation ...

F left
i = −k (xi − xi−1 − `o)

F right
i = −k [`o − (xi+1 − xi)]

F upper
i = −λ (V ∆t − xi)

Fi = F left + F right + F upper
i = k(xi+1 + xi−i −2xi)−λ (V ∆t − xi)
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OFC model

Eventually, the total elastic force exceeds the static friction limit,
and the block slides, to a new x ′ position such that F ′i = 0

∆F = Fi − F ′i = Fi = (2k + α) (x ′i − xi ) =⇒ (x ′i − xi ) =
∆F

(2k + λ)

The movement of block i affects blocks i ± 1:

F ′i±1 = Fi±1 + k (x ′i − xi ) =⇒ F ′i±1 = Fi±1 +
k

2k + λ
Fi

F ′i±1 = Fi±1 + α Fi .

�

EARTHQUAKE,
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OFC model: parameter α

F ′i±1 = Fi±1 + α ∆F , with α =
k

2k + λ

I If α < 1/2, part of the “tension” ∆F , lost by site i , is not
distributed among its neighbors;
The model is said non-conserving;

I If α = 1/2, the model is conservative; but that is only
possible if λ = 0 ...

The same can be done for a square lattice...
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Summarizing

I (Slow) driving:

Fi,j −→ Fi,j + δ for all sites;

I (Fast) Relaxation:
if Fi,j > Fth for some i , j :

{
Fi,j −→ 0
Fi±1,j±1 −→ Fi±1,j±1 + α Fi,j

I The process goes on until Fi,j < Fth ∀ i , j .
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OFC model

This simple model reproduces remarkably well many features
of real earthquakes:

Fractal distribution of
epicenters:



OFC model

This model:
I Besides being a “natural” example of SOC;

I Besides its success in “explaining” power-laws in
earthquakes...

I This model has been important in the context of SOC itself:

I Deterministic (except by IC)

I Conservative / Non-conservative regimes

I am going to discuss scale free behavior
related to a network of epicenters, both on OFC and catalog data.
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Networks

What is a Network?



Networks describe a variety of systems in nature

There are many types of networks...

* Different kinds of nodes,

* links may be directed,

* links may have not the same strength...

I Regular networks (lattices) have been employed / studied by physicists
from way back

I Mathematicians studied irregular networks first
(Erdös & Rényi, random lattices, second half of XX century);

I Computers, growing of interdisciplinarity =⇒ New applications.
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Random network

N nodes connected with
probability p

But most (irregular) networks in nature are more complicated
than that!



Degree of a node

red node degree = 5

Blue node degree = 2

Green node degree = 1

Degree distribution P(k) = probability that a node has degree k
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Degree distribution

Random graph

Free scale
(Newman Cont. Physics, 2005)
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Clusterization

Averages the number of triangles in a network

Given two nodes A and B that are connected, the clusterization
index gives the probability that a third node, connected with A,
is also connected with B.



Average distance `

` =
1

N (N − 1) ∑
i,j

Di,j , Di,j = smallest dist. between nodes i and j

Some topologies have an important property:

In Small world networks ` is small even if N is very large.

Watts & Strogatz model
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Assortative Mixing
Definition
We say that there are assortative mixing when there is a
tendency of connections among nodes with similar
characteristics, as the degree.

Example
Average degree correlation: the average degree of the
neighbors, as a function of the degree of the site.

(of course, dissortative mixing is just the opposite)
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Part II: Outlook

• Network of epicenters Abe & Suzuki, EPL 65, (2004)

• Results for OFC model T.P. Peixoto, C. P. C. Prado, PRE (2004,2006)

• Comparisons with LA’s catalogue T.P. Peixoto, C. P. C. Prado, PRE (2006)

• Forecasting ??? Kinouchi & Prado, PRE (99) ; de Carvalho & Prado, PRL 2000



Networks and earthquakes

There are at least 3 different ways of building a network from
earthquake data:

• Network of epicenters: Abe & Suzuki, EPL 65, (2004)

• Complex network of epicenters and aftershocks: Baiesi &
Paczuski, PRE 69, (2004); Physica A 360; (2004)

• Network of recurrent events, J. Davidsen, Grassberger,
Paczuski, PRE 066104, (2008)

The idea is: networks entangle spatial, temporal, magnitude
aspects, unveiling new correlations and structures, that maybe
could not be seen in other ways...
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The area of the fault is divided in cells:
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Degree distribution: California
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Degree distribution: OFC model
Conservative and non conservative versions have very different
behavior.

• Conservative: ∼ random graph (Poisson distribution);
• Non conservative: ∼ scale free (as real data).

conservative
non conservative
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Spacial distribution of epicenters
model

Conservative
Epicenters occur throughout the
lattice;

Non conservative
Epicenters are concentrated in the
border;



Spacial distribution of degrees
model

Epicenters occur throughout the lattice;

Hubs are well distributed inside the bulk,
but aggregated in stripe-like structures;

The structure disappears
as only larger earthquakes are taken into
account.

In-degree of a vertex placed in the tension lattice,

(L = 800,α = 0.18, s ≥ 2, whole network).



Relation between epicenters and tension
model

When all events are taken into account,
the epicenters seem to happen mostly in the
frontier among those synchronized regions,
and in valley-like structures inside the plateaus

If only larger earthquakes are considered, the
epicenters are more and more
homogeneously distributed.

Snapshot of the tension lattice at the stationary state
(L = 800,α = 0.18, s ≥ 2).

The next 104 epicenters are marked in green.



Degree Correlation
conservative model

There is no correlation, as expected in a random graph.



Degree Correlation
non conservative model

The correlation is linear, k̄nn(k) = a + b k ,

with a, b constants for all values of α < 1/4.



Degree correlation
California

cell of 5 × 5 km

cell of 10 × 10 km

Abe, ...



Degree correlation
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Understanding the dynamics of the model

This linear correlation suggests a basic mechanism:
temporary attractors

From time to time, epicenters occur in a (small) fraction of possible
sites; the dynamics gets trapped in this cycle for a certain amount of
time, and after some time, it escapes.
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This linear correlation suggests a basic mechanism:
temporary attractors

From time to time, epicenters occur in a (small) fraction of possible
sites; the dynamics gets trapped in this cycle for a certain amount of
time, and after some time, it escapes.



Time evolution of the topology: average degree

This can be confirmed looking at
the time evolution of the average degree:

When dynamics gets trapped, the average degree increases.



Precursors motifs

The emergence of a temporary attractor
can be related to big events:

< k > for the subgraph of the last 105 events,
together with the time series of earthquakes.

L = 1000, α = 0.18, and s ≥ 300.



Precursors motifs

The emergence of a temporary attractor
can be related to big events:

< k > for the subgraph of the last 105 events,
together with the time series of earthquakes.

L = 1000, α = 0.18, and s ≥ 300.



Region L - out of attractor

Subgraph made of last 104 epicenters, from point L



Region R - trapped in the attractor

Subgraph made of last 104 epicenters, from point R



Further evidences

This marginal synchronization responds for the degree correlation:
If the multiple edges are removed, correlation disappears!
(But degree distributions are still power laws...)

The temporary marginal synchronization was confirmed later
by Ramos et al., PRL 96, 2006: (slightly different OFC)

quasi-periodicity t∗ ∝ 1− 4α.
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Influence of the size of the cell

When we divide the area of a fault into cells,
we introduce an arbitrary scale:

What is the influence of this scale?

degree distribution
degree correlation



Conservative case

degree distribution degree correlation



What about real data?
(www.data.acec.org/ftp/catalogs/SHLK/)

We analyze South California Catalog:

• Dependence with the size of cells
* importance of comparing networks with the same average degree

• Look for similar precursor motifs

Conclusions

• There is the same linear degree correlation ...
• But the origin is different (no temporary attractors!)
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We need networks with same average degree



Results for catalog data



Precursors?
Average degree × Magnitude

Catalog

OFC model



Precursors?
Average degree × Magnitude

Magnitude

Inter-occurrence
time



Conclusions (partial)

• Surprisingly similarity
between the network of epicenters & earthquakes;

• Complex system’s techniques (complex network’s) can help!

• Understand much deeper the hidden dynamics,
either in OFC or in catalogue data (LA)

• Confirm differences between conservative and non conservative:

? Conservative =⇒ Random graph
? Non conservative =⇒ Free-scale network

So, what about SOC?
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SOC, criticality, OFC model & earthquakes

There have been a lot of discussion about this problem:

• In the context of SOC
• In the context of earthquakes

Why is it important?

• Forecasting

In order to display power-law behavior, it is not necessary to be critical

⇓
almost-critical
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SOC & Branching Processes

There is a connection between SOC
and branching processes.

Branching Processes

• Are characterized by the branching rate σ;
• σ = constant
• Critical if σ = 1

Self-organized Criticality

• Branching rate evolves with time: σ = σ(t)
• In the (statistically) stationary state: σ→ σ∞ (critical if σ∞ = 1)
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What are the possibilities for SOC?

In the OFC model, the branching rate σ may depend on α:

Critical ∀ σ > 0 Critical only if conservative Critical for α ≥ αc



Branching Rate

Knowing the distribution of energy p(E), we can calculate σ:

σ =

∫ ∞
Ec

P+(E+) p(E+) dE+∫ ∞
Ec

p(E+) dE+

p(E+) = Energy distribution of unstable sites (E > Ec);

P+(E+) = Probability that a stable site becomes unstable if it
receives E = α E+.



How can we calculate p(E+)?

In lattice models there
are correlations, and it is
not easy to calculate σ.

But in a similar model...



Extremal Feder & Feder model

OFC

• Driving: global
Ei,j → Ei,j + δ,
until Ei,j = E∗i,j > Ec

• Relaxation rule:
Ei,j → 0
Enn → Enn + α Ei,j

EFF

• Driving: extremal dynamics
E∗i,j = maxEi,j

• Relaxation rule:
Ei,j → 0 + η1

Ern → Ern + α + η2



For EFF model it is possible to calculate p(E) and σ

Pt (E) 6= 0 only if E belongs to one of the intervals In:

In ≡ [(n− 1) α, (n− 1) α + n ε], n = 1, . . . nmax

pn =
∫ (n−1)α+nε

(n−1)α
p(E+) dE =⇒

The process
can be thought as a
jumping of sites
among intervals In.



At every time step
( upgrade of the critical site plus k random neighbors)

• A site from the last interval is transfered to I1;

• A site is removed from I1 with probability k p1

• ... so on so forth ...

⇓

Master equation =⇒
p(E) in the stationary state =⇒

the branching rate σ.
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Finally...

Energy distribution in the steady state:

Kinouchi & Prado, PRE 59, 1999

Branching rate:

σ∞ =



1− C
k (k+1)

(1−k α
ε

)k+1

if η2 6= 0

1− 1−k α
ε

if η2 = 0



Branching rate

Theoretical results for EEF

σ∞ =



1− C
k (k+1)

(
1−k α

ε

)k+1

if η2 6= 0

1− 1−k α
ε

if η2 = 0

with noise

η2 6= 0

{
(b) ε = 0.0625;

(c) ε = 0.0500;

without noise

η2 = 0

{
(d) ε = 0.25;

(e) ε = 0.20.



For OFC and RN-OFC models

(de Carvalho, Prado, PRL 84, 2000)



’Almost-criticality’ may be much more frequent...

Besides earthquakes,
we have also the discussion on avalanches in sandpile models.

Ramos, Altshuler, Maloy, PRL 102, 2009
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The End
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